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Multiplicity of solutions for Yamabe-type equations on
manifolds

Abstract
Let (M, g) be a closed n-dimensional Riemannian manifold. The Yamabe

problem lies in finding a metric conformal to g with constant scalar curvature.
The answer is now known to be yes, and it was proved by Yamabe, Trudinger,
Aubin and Schoen. The conformal metric g̃ = up−2g has constant scalar
curvature λ if and only if u satisfies the Yamabe equation:

−4(n − 1)
n − 2

∆gu + S gu = λu
n+2
n−2

where S g is the scalar curvature of g, ∆g is the Laplace-Beltrami operator
of g and λ ∈ R is any constant. In the works of Yamabe [40], Trudinger
[39], Aubin [3] and Schoen [37] it was proved that the Yamabe equation
always has at least one positive solution. We will study mutiplicity results
for Yamabe-type equations.

In the first place, we suppose that Ω is a region of S3 which is invariant by
the natural T2-action and we study the multiplicity of positive solutions of the
equation:

∆S3u = −(u5 + λu) on Ω, (1)

that vanish on the boundary of Ω, where ∆S3 is the Laplace-Beltrami operator
of the round metric in S3. H. Brezis and L. A. Peletier in [14] consider the case
in which Ω is invariant by the S O(3)-action, namely, when Ω is a spherical
cap. We show that the number of solutions of (1) increases as λ→ −∞, giving
an answer of a particular case of an open problem proposed by H. Brezis and
L. A. Peletier in [14].

In the second place, we study a Yamabe-type equation on a product
manifold. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3
and x0 ∈ M be an isolated local maximum or minimum of the scalar curvature
S g of g. For any positive integer k we prove that if ε > 0 is small enough and
q < n+2

n−2 , then the subcritical equation

−ε2∆gu + (1 + ε2λS g)u = uq

has a positive solution uk which concentrates around x0, for those values of λ
such that a constant βλ is non-zero. This provides solutions for the Yamabe
equation on Riemannian products (M×N, g+εh), where (N, h) is a Riemannian
manifold with constant positive scalar curvature.
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Multiplicidad de soluciones para ecuaciones tipo Yamabe en
variedades

Resumen
Sea (M, g) una variedad riemanniana cerrada de dimensión n. El problema

de Yamabe radica en encontrar una métrica conforme a g con curvatura
escalar constante. Se sabe que la respuesta es sı́, y fue probado por Yamabe,
Trudinger, Aubin y Schoen. La métrica conforme g̃ = up−2g tiene curvatura
escalar constante λ si y solo si u satisface la ecuación de Yamabe:

−4(n − 1)
n − 2

∆gu + S gu = λu
n+2
n−2

donde S g es la curvatura escalar de g, ∆g es el operador de Laplace-Beltrami
respecto g y λ es cualquier constante en R. En los trabajos de Yamabe
[40], Trudinger [39], Aubin [3] y Schoen [37] se prueba que la ecuación
de Yamabe siempre tiene al menos una solución positiva. En esta tesis
obtenemos resultados sobre multiplicidad de soluciones de ecuaciones tipo
Yamabe.

En primer lugar, suponemos que Ω es una región de S3 que es invariante
por la acción natural de T2 y estudiamos la multiplicidad de soluciones
positivas de la ecuación:

∆S3u = −(u5 + λu) en Ω, (2)

que se anulen en el borde de Ω, donde ∆S3 es el operador de Laplace-Beltrami
respecto de la métrica redonda de S3. H. Brezis y L. A. Peletier en [14]
consideran el caso en el que Ω es invariante por S O(3), es decir, cuando Ω es
un casquete esférico. En este trabajo mostramos que el número de soluciones
de (2) aumenta cuando λ→ −∞, dando una respuesta a un caso particular de
un problema abierto propuesto por H. Brezis y L. A. Peletier en [14].

En segundo lugar, estudiamos la ecuación de Yamabe en una variedad
producto. Sea (M, g) una variedad riemanniana cerrada de dimensión n ≥ 3 y
x0 ∈ M sea un máximo o mı́nimo local aislado de la curvatura escalar S g de g.
Demostramos que para cualquier entero positivo k, si ε > 0 es suficientemente
chico y q < n+2

n−2 , entonces la ecuación subcrı́tica

−ε2∆gu + (1 + ε2λ S g)u = uq

tiene una solución positiva uk que se concentra alrededor de x0, para los
valores de λ que hacen que cierta constante βλ no sea cero. Esto proporciona
soluciones a la ecuación de Yamabe en productos riemannianos (M×N, g+εh),
donde (N, h) es una variedad riemanniana con curvatura escalar positiva
constante.
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Introduction

A basic question in differential geometry is to find canonical metrics on
a given manifold M. For example, if the dimension of M is 2, the
Uniformization Theorem states that every simply connected Riemann surface
is conformally equivalent to the open unit disk, the complex plane, or the
Riemann sphere. Then in a given conformal class one can find a metric of
constant Gaussian curvature (for a proof see [19]). In higher dimiensions one
would consider the scalar curvature, which is the average curvature of the
metric at a point. Recall that two metrics g̃ and g are said to be conformal if
g̃ = e2ug for some smooth function u. The Yamabe problem lies in finding
for any closed Riemannian manifold (M, g) of dimension n ≥ 3 a conformal
metric g̃ of constant scalar curvature. The Yamabe problem can be viewed as
a natural uniformization question for higher dimensions.

Let (M, g) be a smooth, connected and compact Riemannian manifold
without boundary. The Yamabe problem can be reduced to the solvability
of a certain semilinear elliptic equation. To that end, let us write g̃ = e2ug
with u ∈ C∞(M). Let S and S̃ denote the scalar curvatures of (M, g) and
(M, g̃) respectively. The relation between them is given by

S̃ = e−2u(S + 2(n − 1) ∆u − (n − 1)(n − 2) |∇u|2),

where ∆ is the Laplace-Beltrami operator of the metric g. The above formula
simplifies if we put g̃ = up−2g with p = 2n

n−2 :

S̃ = u−(p−1) (S u − 4
n − 1
n − 2

∆u).

Hence g̃ has constant scalar curvature λ if and only if u satisfies the Yamabe
equation:

−a ∆u + S u = λ up−1 (3)

where a = an = 4
n − 1
n − 2

. This can be seen as a nonlinear eigenvalue problem.
In fact, the way to prove that the equation −a ∆u + S u = λ uq has a solution
depends strongly on q. When q = 1, the equation is just the linear eigenvalue
problem for −a∆ + S . When q is close to 1, its behavior is similar to that of
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8 CHAPTER 0. INTRODUCTION

the eigenvalue problem. If q is very large however, linear theory is no longer
useful. It turns out that the exponent in the Yamabe equation is the critical
value below which the equation can be solved by classical methods and above
which it may be unsolvable.

Yamabe observed that equation (3) is the Euler-Lagrange equation for the
functional

Q(g̃) =

∫
M

S g̃dVg̃

(
∫

M
dVg̃)2/p

.

where g̃ is allowed to vary over metrics conformally equivalent to g. To see
this, observe that Q can be written as Q(g̃) = Q(φp−2g) = Qg(φ), where

Qg(φ) =
E(φ)
‖φ‖2p

,

E(φ) =

∫
M

a |∇φ|2 + S φ2 dVg, ‖φ‖p =
( ∫

M
|φ|p dVg

)1/p
.

Then for any ψ ∈ C∞(M), integration by parts yields

d
dt

Qg(φ + tψ)
∣∣∣∣
t=0

=
2
‖φ‖2p

∫
M

(
− a ∆φ + Sφ + ‖φ‖−p

p E(φ) φp−1) ψ dVg̃.

Thus φ is a critical point of Qg if and only if it satisfies the Yamabe equation
(3) with λ = E(φ)/‖φ‖p

p. Since by Hölder’s inequality |
∫

M
Sφ2| is bounded

by a multiple of ‖φ‖2p, it follows that Qg (and thus Q) is bounded below. We
denote by [g] the family of conformal metrics to g, and let

Yg(M) = inf
{
Q(g̃) : g̃ ∈ [g]

}
= inf

{
Qg(φ) : φ a smooth, positive function on M

}
.

(4)

This constant Yg(M) is an invariant of the conformal class [g], called the
Yamabe invariant. Its value is central to the analysis of the Yamabe problem.

In 1960, Yamabe claimed to have found a solution to this problem in
[40]. However, Yamabe’s proof contains an error that was discovered by
Neil Trudinger in 1968. Trudinger was able to use the Yamabe’s work in
[39] but only by introducing further assumptions on the manifold M. In
fact, Trudinger showed that there is a positive constant Y0(M) such that the
result is true when the Yamabe invariant satisfies Y(M) < Y0(M). In 1976,
Aubin improved Trudinger’s work by showing that Y0(M) = Y(Sn) where
the n-sphere is equipped with its standard metric. Moreover, Aubin showed
in [3] that if M has dimension n ≥ 6 and is not locally conformally flat,
then Yg(M) < Y(Sn). The remaining cases had been resolved in 1984 by
Schoen [37], thereby completing the solution to the Yamabe problem. This
combined work of Yamabe, Trudinger, Aubin and Schoen gives the existence
of a constant scalar curvature metric in every conformal class of Riemannian
metrics on a compact manifold M without boundary.
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Subsequent developments extended this problem to manifolds with
boundary and to non-compact manifolds. One fundamental contribution to
the solution of the Yamabe problem on manifolds with boundary is due to
Escobar in [17].

When Yg(M) is non-positive, the Yamabe problem has a unique solution
among unit volume metrics. However, in general uniqueness does not hold in
the positive case. An important result in the positive case was proved by Obata
in [28]. The theorem states that if u > 0 satisfies (3) on Sn for S = n(n − 1),
then up−2g0 = φ∗g0 for a conformal transformation φ : Sn → Sn. These are
the only metrics conformal to the standard one on Sn that have constant scalar
curvature.

Multiplicity results for solutions of the Yamabe problem have been proved
in many cases. A result by Pollack shows that every positive conformal
class [g] can be C0-approximated by one with any large number of distinct
solutions, see [34]. In [11] Brendle constructed smooth examples where
the family of solutions to the Yamabe equation is not compact. As another
example, consider the product metric on Sn−1(1) × S1(L). In this case, all
solutions of the Yamabe equation are rotationally symmetric. If the length L
of the S1-factor is sufficiently small, then the Yamabe equation has a unique
solution (which is constant). On the other hand, the Yamabe equation has
many non-minimizing solutions if L is large. We refer to [38] for a detailed
discussion of this example.

Let (M, g) be any closed Riemannianan manifold with scalar curvature sg

and (N, h) be a Riemannian manifold of constant positive scalar curvature
sh. We are interested in multiplicity results for the Yamabe equation on
the Riemannian product (M × N, g + δh), where δ small enough so that the
scalar curvature of the product sg + 1

δ
sh is positive. Most of the known

multiplicity results in these situations use bifurcation theory and assume that
sg is constant (see for example [8], [9], [32]). For the case where the manifold
is a product of spheres, Henry and Petean obtained multiplicity of solutions by
studying the isoparametric hypersufaces, see [21]. Further, in [29] Otoba and
Petean proved multiplicity results for the Yamabe equation on total spaces of
harmonic Riemannian submersions of constant positive scalar curvature. On
the other hand, De Lima, Piccione and Zedda studied in [16] multiplicity of
constant scalar curvature metrics in arbitrary products of compact manifolds
by bifurcation theory.

The situation when sg is non-constant was treated by J. Petean in [33],
where it is proved that the Yamabe equation on the Riemannian product (M ×
N, g + δh) has at least Cat(M) + 1 solutions with low energy, where Cat(M)
denotes the Lusternik–Schnirelmann-category of M.
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Throughout this work we will focus our study on the problem of
multiplicity of solutions for the Yamabe equation (3) for two particular cases.
In the first place, we will study solutions of a Yamabe-type equation which
are invariant by the T2-action in a particular open subset of S3. Then we
will study positive solutions of the Yamabe equation for the product manifold
(M×N, g+ε2h), where (Mn, g) is any closed manifold and (Nm, h) is a manifold
of constant positive scalar curvature sh. We will look for solutions that depend
only on the manifold M. Thus the equation becomes a subcritical equation on
M.

We provide below a brief discussion of both cases.

0.1 The Yamabe equation on an invariant region
of S3.

It is well known that the sphere S3 with the round metric g has constant
positive scalar curvature. We will study the critical elliptic equation on S3:

∆S3U = −
(
U5 + λU

)
(5)

where ∆S3 is the Laplace-Beltrami operator on S3. Let Ω be a particular open
subset of S3. We look for positive solutions of (5) on Ω such that

U = 0 on ∂Ω. (6)

Problems of this kind have attracted the attention of several researchers with
the aim to understand the existence and properties of the solutions.

H. Brezis and L. Nirenberg considered the problem in R3:

∆R3U = −
(
U5 + λU

)
,U > 0 in BR∗ , U = 0 on ∂BR∗ (7)

where BR∗ is the ball of radius R∗ of R3. Using variational techniques, they
obtained in [12] necessary and sufficient conditions on the value of λ for
the existence of a solution. This solution was shown to be unique by M.
K. Kwong and Y. Li in [25]. This is now called the Brezis-Nirenberg problem
and there are numerous results about solutions of this problem in different
open subsets of Rn.

The case when Euclidean space is replaced by S3 was considered in [4],
[5], [13] and [14]. Let Dθ∗ be a geodesic ball in the 3-dimensional sphere
centered at the North pole with geodesic radius θ∗. Problem (5)-(6) with Ω =

Dθ∗ has been investigated by C. Bandle and R. Benguria in [4], C. Bandle
and L.A. Peletier in [5] and H. Brezis and L. A. Peletier in [14] in order
to identify the range of values of the parameters θ∗ and λ for which there
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exists a solution. It is well-known that the method of moving planes can be
applied when θ∗ < π/2 (which means that the geodesic ball is contained in
a hemisphere) to prove that all solutions are radial (see for instance [30] and
[23]). The value λ = −3/4 is special since ∆S3−3/4 is the conformal Laplacian
on S3 and Eq. (5) is then the Yamabe equation: in this case it is known that
there are no nontrivial solutions satisfying (6). The cases λ > −3/4 and
λ < −3/4 present very different features. We will be interested in the second
case. In particular, the situation when λ → −∞ studied by H. Brezis and L.
A. Peletier in [14]. The main result in [14] reads:

Theorem (H. Brezis and L. A. Peletier). Given any θ∗ ∈ (π/2, π) and any k ≥
1, there exists a constant Ak > 0 such that for λ < −Ak, problem (5)-(6) with
Ω = Dθ∗ has at least 2k positive radial solutions U such that U(North pole) ∈
(0, |λ|1/4).

This result was extended by C. Bandle and J. Wei in [6, 7] to general
dimensions and non-critical exponents. Also when θ∗ > π/2 the method of
moving planes does not work and in [6] the authors establish the existence of
positive nonradial solutions. In [7] the authors proved for balls of geodesic
radius θ∗ > π/2 the existence of radially symmetric clustered layer solutions
as λ→ −∞.

Inspired by the theorem of H. Brezis and L. A. Peletier, we study problem
(5)-(6) for the special case where Ω is a torus invariant region of S3. The
spherical caps Dθ∗ are invariant by the codimension one action of O(3) on S3.
The poles are the singular orbits of the action and the spherical caps are the
geodesic tubes around one of the singular orbits. In this paper we will consider
the torus action on S3, which is the another codimension one isometric action.

As in the case of spherical caps studied by Brezis and Peletier, we consider
an open set Ω which is the geodesic tube around one of the singular orbits:

Ω = {x̃ ∈ S3/ dist(x̃,S1 × 0) ≤ θ1},

with θ1 ∈ (0, π/2). Note that Ω is a closed subset in S3 invariant by the
T2-action.

Now from the change of variables that will be detailed in Chapter 1, it
follows that if we restrict the original problem to functions which are invariant
by the T2-action, then it is equivalent to finding solutions of:


u′′(θ) + 2 cos(2θ)

sin(2θ) u′(θ) = λ
(
u(θ)5 − u(θ)

)
, u > 0 on (0, θ1),

u′(0) = 0,
u(θ1) = 0.

(8)

We consider positive solutions of (8) with initial value in the interval (0, 1).
We first prove a nonexistence theorem:
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Theorem 0.1.1. If θ1 ∈ (0, π/4), then there are no solutions of (8) with initial
value in the interval (0, 1).

This means that the solutions of (8) with initial value in the interval (0, 1)
do not vanish before π/4. However, we shall prove the existence of an
increasing number of solutions of problem (8) as λ goes to −∞ with initial
value in the interval (0, 1), which gives a partial positive answer to the open
problem 8.3 proposed by H. Brezis and L. A. Peletier in [14]. Our main result
in the first part of this thesis is the following

Theorem 0.1.2. Given any k ≥ 1 and any θ1 > π/4, then there exists a
constant Ak > 0 such that for λ < −Ak problem (8) has at least 2k solutions
with initial value in the interval (0, 1).

We are also interested to study solutions of the equation invariant by the
T2-action in the whole sphere S3:

∆S3U = λ
(
U5 − U

)
, U > 0 on S3. (9)

Positive solutions of (9) are called “ground state” solutions. We have the
following result analogous to [14, Theorem 1.6]:

Theorem 0.1.3. Let n ≥ 1 and λ ∈ [−(2n + 2)(2n + 3),−(2n)(2n + 1)). Then
for every k ∈ {1, 2, . . . , n} there exists at least one solution Uk of problem (9),
where Uk = uk(θ) has the following propieties:

1. uk has exactly k local maximum on (0, π2 ),

2. uk(π/2 − θ) = uk(θ) for θ ∈ (0, π2 ),

3. uk(0) < 1.

0.2 The Yamabe equation on a product manifold
Let (Mn, g) be any closed manifold and (Nm, h) a manifold of constant positive
scalar curvature sh. We will be interested in positive solutions of the Yamabe
equation for the product manifold (M × N, g + ε2h):

−a(∆g + ∆ε2h)u + (sg + ε−2sh)u = up−1, (10)

with a = am+n =
4(m+n−1)

m+n−2 , p = pm+n =
2(m+n)
m+n−2 , sg the scalar curvature of (Mn, g),

and ε small enough so that the scalar curvature sg + ε−2sh is positive. The
conformal metric up−2(g + ε2h) then has constant scalar curvature.
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We restrict our study to functions that depend only on the first factor,
u : M → R. We normalize h so that sh = an. Then u solves the Yamabe
equation if and only if (after renormalizing)

−ε2∆gu +
(
a−1

n sgε
2 + 1

)
u = up−1. (11)

Note that p = pm+n < pn. So the problem becomes a subcritical problem on
M. We will study the general equation

−ε2∆gu +
(
λsgε

2 + 1
)

u = up−1, (12)

where λ ∈ R. Positive solutions of this equation are the critical points of the
functional Jε : H1,2(M)→ R, given by

Jε(u) = ε−n
∫

M

(
1
2
ε2|∇u|2 +

1
2

(
ε2λsg + 1

)
u2 −

1
p

(u+)p

)
dVg,

where u+(x) = max{u(x), 0}.
We will build solutions of (10) by using the Lyapunov-Schmidt reduction

procedure which was applied by several authors. In particular in the articles
by Micheletti and Pistoia [26] and Dancer, Micheletti and Pistoia [15] the
procedure is used to build solutions of a similar elliptic equation under certain
conditions on the scalar curvature. We will apply a similar technique to
problem (11).

Let us briefly describe the construction. One first considers what will be
called the limit equation in Rn. Recall that for 2 < q < 2n

n−2 , n > 2, the equation

−∆U + U = Uq−1 in Rn (13)

has a unique (up to translations) positive solution U ∈ H1(Rn) that vanishes
at infinity. Such function is radial and exponentially decreasing at infinity,
namely

lim
|x|→∞

U(|x|)|x|
n−1

2 e|x| = c > 0,

lim
|x|→∞

U′(|x|)|x|
n−1

2 e|x| = −c.

See reference [24] for details. We will denote this solution by U in the
following.

Note that for any ε > 0, the function Uε(x) = U( x
ε
), is a solution of

−ε2∆Uε + Uε = Uq−1
ε .

For any x ∈ M consider the exponential map expx : TxM → M. Since
M is closed we can fix r0 > 0 such that expx

∣∣∣
B(0,r0)

: B(0, r0) → Bg(x, r0) is
a diffeomorphism for any x ∈ M. Here B(0, r) is the ball in Rn centered at 0
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with radius r and Bg(x, r) is the geodesic ball in M centered at x with radius r.
Let χr be a smooth radial cut-off function such that χr(z) = 1 if z ∈ B(0, r/2),
χr(z) = 0 if z ∈ Rn \ B(0, r), |∇χr(z)| < 3/r and |∇2χr(z)| < 2/r2. Fix any
r < r0. For a point ξ ∈ M and ε > 0 let us define on M the function

Wε,ξ(x) =

{
Uε(exp−1

ξ (x))χr(exp−1
ξ (x)) i f x ∈ Bg(ξ, r),

0 otherwise.

One considers Wε,ξ as an approximate solution to equation (11) which
concentrates around ξ. As ε → 0 Wε,ξ will get more concentrated around ξ
and will be closer to an exact solution. Summing up a finite number k of these
functions concentrating on different points we have an approximate solution
of equation (11): Let k0 ≥ 0 be a fixed integer and denote ξ = (ξ1, . . . , ξk0) ∈
Mk0 . Then

Vε,ξ̃(x) :=
k0∑

i=1

Wε,ξεi

is our approximate solution. We will find exact solutions by perturbing these
approximate solutions. Let

βλ := λ

∫
Rn

U2(z) dz −
1

n(n + 2)

∫
Rn
|∇U(z)|2|z|2 dz. (14)

It has been proved by A. M. Micheletti and A. Pistoia [27] that for a
generic Riemannian metric the critical points of the scalar curvature are
non-degenerate and in particular isolated. For all λ such that βλ < 0 we will
show that for small ε and any isolated local maximum x0 of sg there exists a
solution of problem (11), with the points in ξ approaching x0, which is close
to Vε,ξ in the norm ‖ ‖ε defined by:

‖u‖2ε :=
1
εn

(
ε2

∫
M
|∇gu|2 dµg +

∫
M

(ε2λsg + 1) u2 dµg

)
.

Analogously, for those λ such that βλ is positive the same result is obtained
by taking an isolated minimum of the scalar curvature instead of a maximum:

Theorem 0.2.1. Assume that βλ , 0. If βλ < 0 ( βλ > 0) then let ξ0 be an
isolated local maximum (minimum) point of the scalar curvature S g. For each
positive integer k0, there exists ε0 = ε0(k0) > 0 such that for each ε ∈ (0, ε0)
there exist points ξε1, . . . , ξ

ε
k0
∈ M such that

dg(ξεi , ξ
ε
j)

ε
→ +∞ and dg(ξ0, ξ

ε
j)→ 0 as ε → 0, (15)

and a solution uε of problem (11) such that

‖uε −
k0∑

i=1

Wε,ξεi
‖ε → 0 as ε → 0.
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This thesis is organized as follows:
In the next chapter, we give the mathematics needed to fully understand

the results mentioned in this introduction. It is divided in three sections,
in which a new formulation of the Yamabe equation on Sn, methods for
solving nonlinear eigenvalue problems and the Lyapunov-Schmidt reduction,
are described.

In Chapter 2 we first study the ground state solutions of a Yamabe-type
equation on S3. Then we prove a result about multiplicity of solutions for that
equation on an torus invariant region of S3 with boundary.

In Chapter 3 we consider the Yamabe equation on a product of two
manifold, assuming that the solution depends only on one of those manifolds.
We use the Lyapunov-Schmidt reduction to prove a result of multiplicity of
solutions for the equation.
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Chapter 1

Preliminaries

In this chapter we enunciate several concepts that will be used throughout the
work. In the first section we consider the natural T2-action and we give a new
formulation of the Yamabe equation. In Section 1.2 we explain the shooting
method and we review the statement of the Sturm Liouville Comparison
Theorem. In Section 1.3 we formulate the Lyapunov-Schmidt reduction as
it will be applied in Chapter 3.

1.1 T2-action on S3

Consider T2 = S1 × S1 and the natural action T2 × S3 → S3 given by

(α, β)(x, y, z,w) = (α · (x, y), β · (z,w)) (1.1)

where · is the complex multiplication. This is an isometric, codimension one,
action on S3 and there are two special orbits: S1×{0} and {0}×S1. The distance
between these two singular orbits is π/2.

Now we present a change of variables leading to a different formulation
of Yamabe equation on S3. With this aim, we introduce local coordinates in
R4: 

x1 = r cos(θ) cos(η1),
x2 = r cos(θ) sin(η1),
x3 = r sin(θ) cos(η2),
x4 = r sin(θ) sin(η2),

(1.2)

where r =

√
x2

1 + x2
2 + x2

3 + x2
4, 0 ≤ θ < π/2, 0 ≤ η1, η2 ≤ 2π. In these

coordinates, the unit sphere S3 can be parameterized by r = 1, {0 ≤ θ ≤
π/2, 0 < η1, η2 < 2π}. The round metric g on the 3-sphere in these coordinates
is given by

ds2 = dθ2 + cos2(θ)dη2
1 + sin2(θ)dη2

2

17
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Recall that the Beltrami-Laplace operator on S3 in local coordinates is
given by:

∆S3 =
1√
|g|

3∑
i=1

∂

∂ηi

(
g−1

ii

√
|g|

∂

∂ηi

)
. (1.3)

Suppose that the function U : Ω → R is invariant by the T2-action. Then
U(x, y, z,w) = u(θ) for some function u : [0, θ1]→ R and since

|g| = cos2(θ) sin2(θ),

the Laplace-Beltrami operator on S3 applied to U takes the form:

∆S3U =
1

cos(θ) sin(θ)
d
dθ

(
cos(θ) sin(θ)

du
dθ

)

= u′′(θ) +

(
cos(θ)
sin(θ)

−
sin(θ)
cos(θ)

)
u′(θ)

= u′′(θ) + 2
cos(2θ)
sin(2θ)

u′(θ).

(1.4)

We will use this in the next chapter to study the Yamabe equation on a torus
invariant region of S3.

1.2 Methods for solving nonlinear eigenvalue
problems

A classical Sturm-Liouville equation is a real second-order linear differential
equation of the form

(p(x)u′(x))′ + q(x)u(x) = λu(x) (1.5)

where p(x) and q(x) are given smooth functions on the finite closed interval
[a, b] and λ ∈ R. It may be assumed throughout the following, that
p is strictly positive on the open interval (a, b). The value of λ is not
specified in the equation; finding the values of λ for which there exists a
nontrivial (nonzero) solution u of (1.5) satisfying certain boundary conditions
is part of the problem called the Sturm-Liouville problem. Such values
of λ, when they exist, are called the eigenvalues of the boundary value
problem defined by (1.5) and the prescribed set of boundary conditions. The
corresponding solutions u(x) are the eigenfunctions of this problem. Often
the Sturm-Liouville equation is defined together with boundary conditions,
specifying the value of the solution at the endpoints a and b. For a more
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elaborated study of the Sturm-Liouville problems we can refer to [22] and
[10].

A classical result about the relative position of the zeros of different
solutions is the Sturm Liouville Comparison Theorem:

Theorem 1.2.1. (Sturm Liouville Comparison Theorem) For i = 1, 2 set
ui(x) be a nontrivial solution on (a, b) of (pi(x)y′)′ + Qi(x)y = 0 where 0 <
p2 ≤ p1 and Q2 ≥ Q1 on (a, b). Then (strictly) between any two zeros of u1

lies at least one zero of u2 except when u2 is a constant multiple of u1.

For a proof see [10]. The most common application is to a Sturm-Liouville
system with different eigenvalues λi, for i = 1, 2. If p1 = p2 = p and
Qi(x) = λi − q(x), then the theorem makes a comparison of the different
eigenfunctions of the equation (1.5). We assume that λ2 > λ1 . The zeros
of the eigenfunction of λ2 then lie between the zeros of the eigenfunction of
λ1. We say that the higher eigenfunction is oscillating ‘more rapidly’ than the
lower eigenfunction.

On the other hand the shooting method is a method for solving a boundary
value problem by reducing it to the solution of an initial value problem. The
central idea is to replace the boundary value problem under consideration by
an initial value problem. Suppose we want to solve a boundary value problem
with Dirichlet boundary conditions:

u′′ = f (t, u, u′) on [a, b],
u(a) = u(b) = 0. (1.6)

Let us suppose f : [a, b] × R2 → R is continuous and locally Lipschitz with
respect to u, which guarantees that for any α ∈ R the initial value problem

u′′ = f (t, u, u′) on [a, b],
u(a) = 0, u′(a) = α

(1.7)

has a unique solution uα, defined in a maximal nontrivial interval Iα = [a,M),
with M = M(α) ∈ (a,+∞). In general, we cannot know if M(α) > b, although
on the set {α : M(α) > b}, the function α → uα(b) is continuous. This is due
to the continuous dependence with respect to the initial values.

It is clear that we are looking for a value α such that uα(b) is well defined
and uα(b) = 0. In other words, we are looking for a zero of the function T
defined by

T (α) := uα(b).

Due to the continuity mentioned before, it is enough to find an interval Λ =

[α∗, α∗] such that T (α) is well defined for all α ∈ Λ and, moreover, T (α∗) ≤
0 ≤ T (α∗) or vice versa.
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For instance, if f is bounded, the solutions of (1.7) are defined in [a, b].
Moreover, direct integration of the equation yields

u′α(x) = α +

∫ x

0
f (s, uα(s))ds.

This says that, if α ≥ ‖ f ‖∞, then

u′α(x) ≥ α − x‖ f ‖∞ ≥ 0

for x ≤ b. Thus uα is nondecreasing, and hence T (α) > 0. In a similar way, if
α < −‖ f ‖∞, then T (α) < 0. Which allows to deduce that T (α) = 0 for some
α ∈ [−‖ f ‖∞, ‖ f ‖∞]. For more information and examples about this method
see [2].

1.3 Lyapunov-Schmidt reduction
In this section the main features of the classical Lyapunov-Schmidt reduction
are outlined in a form suitable to be used in Chapter 3. The method is broader
and is frequently employed in bifurcation theory. Here we will fix notation
and give the steps in the precise form needed for later applications. This
method is explained in detail in [1].

Let H be a Hilbert space. Let S ∈ C1(H,H) be such that S ′(0) is not
invertible and consider the equation S (u) = 0. Suppose that u = 0 is a solution
for the equation and denote S ′ = S ′(0) the differential of S evaluated at 0.
Assume that S ′ has kernel K = Ker(S ′) with dim K > 0 and let K⊥ denote
the complement of K in H. Then S ′ has range Ran(S ′) and this range has a
complement Ran(S ′)⊥ in H. We suppose:

• S ′ self-adjoint operator,

• S ′ is zero-index Fredholm.

Then it follows that K⊥ = Ran(S ′) and K = Ran(S ′)⊥. Let π⊥ : H → K⊥ be
the linear projection onto the range and π : H → K the linear projection onto
K. For all u ∈ H, there exists a unique decomposition: u = v + φ , with v ∈ K
and φ ∈ K⊥.

Thus applying π and π⊥ to S (u) = 0 we obtain the following equivalent
system:

π(S (v + φ)) = 0, (1.8)

π⊥(S (v + φ)) = 0. (1.9)
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The latter is called the auxiliary equation.
The auxiliary equation (1.9) is uniquely solvable in K⊥, locally near 0. Set

T (v, φ) = π⊥S (v + φ). One has that T ∈ C1(K × K⊥,K⊥) and ∂φT (0, 0) is the
linear map from K⊥ to K⊥ given by

∂φT (0, 0)(φ) = π⊥(S ′(0)(φ)) = π⊥(S ′(φ)) = S ′(φ), (1.10)

since S ′(φ) ∈ K⊥. In other words,∂φT (0, 0) is the restriction of S ′ to K⊥,
and thus it is injective and surjective (as a map from K⊥ to K⊥). Since K⊥ is
closed, it follows that ∂φT (0, 0) is invertible and a straight application of the
Implicit Function Theorem yields the following

Lemma 1.3.1. There exist neighbourhoods V0 of v = 0 in K , W0 of φ = 0 in
K⊥, and a map φ = φ(v) such that

π⊥(S (v + φ)) = 0 v ∈ V0 , and φ ∈ W0, if and only if, φ = φ(v).

Then it remains only to solve the problem in finite dimension (1.8).

In Chapter 3 we apply the Liapunov-Schmidt method of
finite-dimensional reduction, but we take as “trial solutions” of the
equation S (u) = 0 the translates Vε,ξ̃ of the solution U of the limit equation
(13).

The idea is that the kernel of S ′(Vε,ξ̃) should be close to K and then the
linear map π→ π⊥(S ′((Vε,ξ̃)(φ)) should be invertible as a map from K⊥ to K⊥.
Then the Inverse Function Theorem could be apply and finally it remains to
solve the finite dimensional problem.

Resumen del Capı́tulo
En este capı́tulo enunciamos varios conceptos que se utilizarán a lo largo de
la tesis. En la primera sección consideramos la acción natural de T2 en S3 y
damos una formulación diferente de la ecuación de Yamabe.

En la sección 1.2 explicamos el método de shooting, que utilizaremos
en esta tesis para resolver un problema de valor lı́mite. La idea central es
reemplazar el problema del valor lı́mite considerado por un problema de valor
inicial. También enunciamos el Teorema de comparación de Sturm Liouville,
que es un resultado clásico sobre la posición relativa de los ceros de diferentes
soluciones de una ecuación diferencial ordinaria dada.

En la sección 1.3 formulamos las caracterı́sticas principales de la
reducción clásica de Lyapunov-Schmidt de una forma adecuada para ser
utilizada en el capı́tulo 3. El método es más amplio de lo que aquı́ se presenta
y se emplea con frecuencia en teorı́a de bifurcación.
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Chapter 2

The Yamabe equation on an
invariant region of S3

2.1 Introduction
In this chapter we will study the following problem:


u′′(θ) + 2 cos(2θ)

sin(2θ) u′(θ) = λ
(
u(θ)5 − u(θ)

)
, u > 0 on (0, θ1),

u′(0) = 0
u(θ1) = 0

(2.1)

where u : [0, θ1] → R and we will prove Theorem 0.1.1, Theorem 0.1.2 and
Theorem 0.1.3. Our approach to prove Theorem 0.1.2 mainly relies upon a
method that has been successfully used in [14]. First we use this method to
show that there exists at least 2 solutions of problem (2.1) with initial value
in the interval (0, 1) that have a single spike or maximum. The next step is to
prove the theorem in the case k = 2 using the same techniques. Finally the
theorem follows by induction.

The chapter is organized as follows. In Section 2.2 we will study
properties of the ground state solutions and prove Theorem 0.1.3. Section
2.3 contains some results about auxiliary linear problems, that will help us
to prove the main theorem in next section. Theorem 0.1.1 will be proved in
Section 2.4, as well as Theorem 0.1.2.

A version of this part of the thesis appears in [35].

2.2 Positive solutions on S3

In this section we present a detailed study of the problem obtained by
linearizing Eq. (2.1) around the nontrivial constant solution when λ < 0.

23
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Figure 2.1: Two-spike solution u of problem (2.1) for λ = −25 and u(0) = 0.3

Then we use these results to prove Theorem 0.1.3. Let α ∈ (0, 1), λ < 0, and
denote by uα,λ(θ) the solution of:

u′′(θ) + 2 cos(2θ)
sin(2θ) u′(θ) = λ

(
u(θ)5 − u(θ)

)
,

u(0) = α,
u′(0) = 0.

(2.2)

There is a constant solution u1,λ ≡ 1, and it is important to understand the
behavior of the solutions uα,λ(θ) with α close to 1. With this aim, consider the
function

wλ(θ) =
d

dα

∣∣∣∣
α=1

uα,λ(θ).

Then wλ is the solution of the linear problem
w′′(θ) + 2 cos(2θ)

sin(2θ) w′(θ) = 4λw,
w(0) = 1,
w′(0) = 0.

(2.3)

This is the eigenvalue equation for ∆S3 restricted to functions invariant by
the T2-action. It can be understood for instance adapting the techniques used
by J. Petean in [32] (for the case of radial functions). We will sketch the
proofs briefly for completeness.

Let λn := −n(n + 1).
If we denote by Fc(ϕ)(θ) = ϕ′′(θ) + 2 cos(2θ)

sin(2θ)ϕ
′(θ) − cϕ(θ) then by a direct

computation:

Fc(cosk(2θ)) = (4λn − c) cosk(2θ) + 4k(k − 1) cosk−2(2θ).
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Figure 2.2: Four-spike solution u of problem (2.1) for λ = −100 and u(0) =

0.3

Lemma 2.2.1. The solution wλn of (2.3) is a linear combination of cosn−2 j(2θ),
where 0 ≤ 2 j ≤ n.

It then follows that wλn(π/2) = (−1)n. If n is odd then wλn(π/4) = 0 and if
n is even then w′λn

(π/4) = 0.
It follows from Sturm-Liouville theory that the number of zeros of wλ in

(0, π/2) is a non-increasing function of λ (< 0). It is then easy to see that:

Lemma 2.2.2. The solution wλn has exactly n zeros in the interval (0, π2 ) and
therefore exactly n − 1 critical points in (0, π2 ).

And using again Sturm-Liouville theory and the previous comments it
follows:

Lemma 2.2.3. If λ ∈ [λ2n+2, λ2n) then wλ has exactly n critical points in the
interval (0, π/4).

Denote by
τ0

1(λ) < τ0
2(λ) < . . . < τ0

n(λ)

the critical points of wλ in (0, π/2). Using the uniform continuity of the
solution of problem (2.2) with respect to the initial value α we obtain:

Lemma 2.2.4. Suppose that wλ has a critical point τ0
k(λ) for some k ≥ 1.

Then for α < 1 sufficiently close to 1, the solution uα,λ has a critical point
τk(α) and

τk(α)→ τ0
k(λ), as α→ 1.

Remark. τk = τk(α) is a continuous function (where it is defined) and from
(2.2) it is easy to see that uα,λ(τ j) > 1 if j is odd, and uα,λ(τ j) < 1 if j is even.
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Lemma 2.2.5. If for any α ∈ (0, 1) the solution uα of problem (2.2) satisfies
u′α(π4 ) = 0, then u′α(π2 ) = 0 and uα(θ) = uα(π2 − θ) for θ ∈ [π4 ,

π
2 ).

Proof. The function v(θ) = uα(π2 − θ) for θ ∈ [π4 ,
π
2 ) is also a solution of the

equation. Moreover v(π4 ) = uα(π4 ) and v′(π2 ) = 0 = u′α(π4 ). Therefore v = uα in
[π4 ,

π
2 ) and the lemma follows. �

Lemma 2.2.6. If α is close to zero, then the solution uα of problem (2.2) has
no local extremes on (0, π4 ).

Proof. For α close to 0 the solution uα increases slowly in interval (0, π4 ) and
stays less than 1 in that interval. Therefore it does not have any local extremes
on (0, π4 ). �

Now define:

F(u) :=
∫ u

0

(
s5 − s

)
ds =

1
6

u6 −
1
2

u2. (2.4)

Then F(α) < 0. Note that F has only one positive zero σ := 3
1
4 .

Lemma 2.2.7. If τ j(α) < π
4 , then 0 < uα(τ j(α)) < σ.

To prove this lemma we consider the energy function defined by

Eα(θ) :=
(
u′α(θ)

)2

2
− λ

(
(uα(θ))6

6
−

(uα(θ))2

2

)
. (2.5)

If uα is a solution of problem (2.2) then we have

E′α(θ) = −2
cos(2θ)
sin(2θ)

u′α(θ)2.

Consequently Eα is decreasing on [0, π4 ] and Eα(0) = −λF(α).

Proof of Lemma 2.2.7. Since Eα is decreasing on [0, π4 ] and 0 < τ j(α) ≤ π
4 , it

follows that
Eα(τ j) < Eα(0) = −λF(α).

Consequently, since Eα(τ j(α)) = −λF(uα(τ j(α))) and 0 < α < 1 we have that

F(uα(τ j(α))) < F(α) < 0.

This means that 0 < uα(τ j(α)) < σ, as asserted.
�

Next we define α∗k as the infimum value of α for which τk(α) exists on
(α, 1):

α∗k = inf{α0 ∈ (0, 1) : for α ∈ (α0, 1) uα has at least k critical points on (0, π/2)}.
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Lemma 2.2.8. Suppose that τk(α) exists for some α < 1 sufficiently close to 1
so that α∗k is well defined. Then there exists δ > 0 such that

τk(α) ≥
π

4
if α ∈ (α∗k, α

∗
k + δ).

Proof. If α∗k = 0 then the assertion follows from Lemma 2.2.6. Thus we may
assume that α∗k ∈ (0, 1). Suppose there exists a decreasing sequence {α j} such
that

τk(α j) <
π

4
and α j → α∗k.

Since the sequences {τk(α j)} and {uα j(τk(α j))} are bounded by Lemma 2.2.7,
it follows that there exist τ∗k ∈ [0, π4 ] and u∗ ∈ [0, σ] such that, taking a
subsequence, we may soppose:

τk(α j)→ τ∗k and uα j(τk(α j))→ u∗.

If u∗ is 1 or 0, then by uniqueness uα∗k is constant, which contradicts the fact
that α∗k ∈ (0, 1). If u∗ ∈ (0, 1), then we use the Implicit Function Theorem
with the function G(α, θ) = u′α(θ). Since α∗k , 0, 1, it follows that d

dθG(α∗k, θ) ,
0. But since G(α∗k, θ) = 0, we have that τk(α) is well defined for all α in a
neighbourhood of α∗k, which contradicts the definition of α∗k. �

We end this section with the proof of Theorem 0.1.3:

Theorem. Let n ≥ 1 and λ ∈ [−(2n + 2)(2n + 3),−(2n)(2n + 1)). Then for
every k ∈ {1, 2, . . . , n} there exists at least one solution Uk of problem (9),
where Uk = uk(θ) has the following propieties:

1. uk has exactly k local maximum on (0, π2 ),

2. uk(π/2 − θ) = uk(θ) for θ ∈ (0, π2 ),

3. uk(0) < 1.

Proof. Suppose n ≥ 1 and λ ∈ [−(2n + 2)(2n + 3),−(2n)(2n + 1)). Given
k ∈ {1, 2, . . . , n} we will show that

τk(α0) =
π

4

for some α0 and hence the solution uα0 has k local extremes on (0, π4 ]. Since
u′α0

(π/4) = 0, by Lemma 2.2.5 it follows that uα0 satisfies (i)−(iii) of Theorem
0.1.3.

By Lemmas 2.2.3 and 2.2.4 , since λ ∈ [λ2n+2, λ2n) and α is close to 1, the
solution uα has n local extremes (0, π/4). Therefore τk(α) < π

4 . On the other
hand, by Lemma 2.2.8 we know that if α is close to α∗k then τk(α) ≥ π

4 . By
continuous dependence it follows that there is α0 such that τk(α0) = π

4 .

�
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2.3 Auxiliary results
In this section we will establish three auxiliary results that we will need to
prove our main theorem in next section.

Lemma 2.3.1. Let δ, κ > 0 and K be constants. Then there are constants
ε1 > 0 and β > 0 such that the solution ϕε of{

ε2ϕ′′ − 2ε2Kϕ′ − κϕ = 0,
ϕ(±δ) = 1/2, (2.6)

satisfies: ϕε(0) < e−β/ε for all ε ∈ (0, ε1).

Proof. Note that ϕε(θ) = Aec1θ + Bec2θ, with A, B given by

A =
1 − e2c2δ

2(ec1δ − e(2c2−c1)δ)
, and B =

1 − e2c1δ

2(ec2δ − e(2c1−c2)δ)
,

where c1, c2 are the roots of the equation ε2x2 − 2ε2Kx − κ = 0. Then

c1, c2(ε) = K ±
√
µε

where µε = K2 + κ/ε2. Now it is easy to see that c1(ε)→ +∞, c2(ε)→ −∞ as
ε → 0 and consequently

e
√
µεδ(A + B)→ C, as ε → 0,

where C is some positive constant. It follows that there are constants β > 0
and ε1 > 0 such that

ϕε(0) = A + B < e−β/ε , if ε < ε1.

�

Now we shall study the behavior of the solutions of the equation

Z′′(s) + Z(s)5 − Z(s) = 0, Z′(0) = 0, (2.7)

when s→ −∞. To this end consider the following lemma.

Lemma 2.3.2. Let Z a solution to the Eq. (2.7) such that

Z′(0) = 0, (2.8)
Z(0) = α, (2.9)

with α > 0. Then
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1. If α < 31/4 and α , 1 then Z oscillates around 1.

2. If α > 31/4 then Z vanishes at some s < 0, and it is positive and
increasing in (s, 0).

3. If α = 31/4 then Z is increasing in (−∞, 0) and lims→−∞ Z(s) = 0.

Proof. If we multiplicate the equation (2.7) by Z′ and integrate, then we have

c =
Z′(s)2

2
+

Z(s)6

6
−

Z(s)2

2
. (2.10)

It immediately follows that Z is globally defined and c = α6/6 − α2/2.
Note that if s1 is a critical point of Z then

c =
Z(s1)6

6
−

Z(s1)2

2
. (2.11)

Now if c ≥ 0, ie α ≥ 31/4, there is only one positive value of Z(s1) which
satisfies the previous equation. There are two options: either Z vanishes at
some s0 < 0 or L = lims→−∞ Z(s) exists and it is non-negative. Suppose first
that Z vanishes at some s0 < 0 and that Z′(s0) , 0 because the uniqueness of
solutions. Evaluating in (2.10) we get Z′(s0)2/2 = c and c > 0. Otherwise if
there is a L ≥ 0 such that

L = lim
s→−∞

Z(s). (2.12)

Then there is a sequence s j → −∞ as j→ ∞ such that Z′(s j)→ 0. If we take
the limit when s j → −∞ to the equation (2.11), then we obtain L = α, which
is a contradiction because Z is increasing, or L = 0, which implies c = 0.

Now if if c < 0, ie α < 31/4, and Z has a critical point in s1 there is
two possible values of Z(s1): a minimum less than 1 and a maximum greater
than 1. If Z is not oscillating, it remains over or below the value 1. We
will show that it is not possible. Suppose Z remains below 1. Then Z is
convex and positive, so there is a 0 < L < 1 that satisfies (2.12). Morover
lim j→∞ Z′(s j) = 0 and lim j→∞ Z′′(s j) = 0 for a sequence s j → −∞. Taking
limit when s j → −∞ in (2.7) we have: lims j→−∞ Z′′(s j) = L − L5. There is a
contradiction. If Z is over the value 1, we get a contradiction in a similar way.
Therefore Z remains oscillating around 1.

�

Lemma 2.3.3. Let z = zε be a solution of the equation

z′′(s) + 2ε
cos(2T0 + 2sε)
sin(2T0 + 2sε)

z′(s) + z(s)5 − z(s) = 0, (2.13)
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which is positive and increasing on the interval (ψ(ε), 0) with the initial
conditions

z′(0) = 0, (2.14)
z(0) = u0(ε), (2.15)

and let Z0 be the unique solution of problem (2.7)-(2.8) such that Z0(0) = 31/4.
Assume that ψ(θ) is a function such that ψ(ε)→ −∞ as ε → 0. Then

zε(s)→ Z0(s) and z′ε(s)→ Z′0(s) when ε → 0

uniformly over bounded intervals and, in particular,

u0(ε)→ 31/4 when ε → 0. (2.16)

Proof. It is knwon that such solutions zε are uniformly bounded (it can be
proved for instance as in [24, Lemma 15]). Since the family of solutions
{zε(s) : 0 < ε < ε0} is equicontinuous it follows from Arzelà-Ascoli Theorem
that

zε(s)→ Z(s)

along a sequence, uniformly on bounded intervals, where Z is a solution of
(2.7). But on a large interval the solution Z must be positive and increasing,
therefore Z = Z0 by the previous lemma. It then follows that the entire family
converges to Z0. In a similar manner it is proved that z′ε(s)→ Z′0(s). �

2.4 Proof of the main theorems

This section is devoted to the proofs of Theorems 0.1.1 and 0.1.2:

Theorem (0.1.1). If θ1 ∈ (0, π/4), then there are no solutions of (8) with initial
value in the interval (0, 1).

Theorem (0.1.2). Given any k ≥ 1 and any θ1 > π/4, then there exists a
constant Ak > 0 such that for λ < −Ak problem (8) has at least 2k solutions
with initial value in the interval (0, 1).

The proof of Theorem 0.1.1 is based on the techniques used by C. Bandle
and R. Benguria in [4].
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Proof of Theorem 0.1.1. Multiply Eq. (2.1) by u′(θ) and integrate over (0, θ1).
This yields

1
2

u′(θ1)2 + 2
∫ θ1

0

cos(2θ)
sin(2θ)

(u′(θ))2 dθ = −λF(α). (2.17)

If 0 < θ < θ1 <
π
4 then cos(2θ)

sin(2θ) > 0. Since λ < 0, we have a contradiction:

0 <
1
2

u′(θ1)2 + 2
∫ θ1

0

cos(2θ)
sin(2θ)

u′(θ)2 dθ = −λF(α) < 0.

�
Now we prove Theorem 0.1.2 for k = 1. We shall show that there exist at

least two solutions of problem (2.1) with initial value in the interval (0, 1) that
have a single spike. Let

ε2 =
1
|λ|

and α ∈ (0, 1). Then consider the initial value problem


ε2u′′(θ) + 2ε2 cos(2θ)

sin(2θ) u′(θ) + u(θ)5 − u(θ) = 0 in (0, θ1),
u > 0 in (0, θ1),
u(0) = α,
u′(0) = 0.

(2.18)

We denote the solution by uα,ε(θ) and define

Θ(α, ε) = sup{θ ∈ (0, π/2) : uα,ε > 0 in (0, θ)}. (2.19)

We will show that for ε small enough there are two values α1, α2 ∈ (0, 1) such
that Θ(αi, ε) = θ1 for i = 1, 2 and the solutions uα1,ε and uα2,ε have exactly 1
spike on the interval (0, θ1). These techniques have been used successfully in
[14].

Note that Theorem 0.1.1 implies that Θ(α, ε) > π
4 . It may happen that the

solution does not vanish in the interval (0, π2 ). Therefore we define A(ε) as
the set of values of α for which uα,ε vanishes before π

2 :

A(ε) = {α ∈ (0, 1) : 0 < Θ(α, ε) < π/2}. (2.20)

A(ε) is an open set and if α ∈ A(ε) then it follows by uniqueness that

uα,ε(Θ(α, ε)) = 0 and u′α,ε(Θ(α, ε)) < 0.

On the other hand if we fix a T0 ∈ (π4 ,
π
2 ), then by the Sturm Liouville

Comparison Theorem for ε small enough the solution wλ of the linear Eq.
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(2.3) has a maximum in τ0
1(λ) < T0. Hence there exists an initial value

α0 ∈ (0, 1) such that
τ1(α0) = T0.

Since α0 depends on ε denote

α0 = α0(ε); uε(θ) = uα0(ε),ε(θ) and u0(ε) = uε(T0).

In other words, fixed T0 ∈ (π4 ,
π
2 ) and ε small enough, we can find a solution

uε of problem (2.18) that reaches its first maximum u0(ε) at θ = T0. It is clear
that u0(ε) > 1. In the following lemmas we show that for ε small enough,
F(u0(ε)) > 0, where F is the function defined in (2.4):

F(u) =
1
6

u6 −
1
2

u2.

Then, since F is increasing on (1,∞) and u0(ε) > 1, it follows that u0(ε) > σ,
where σ = 31/4 is the positive zero of F.

Lemma 2.4.1. There exist constants A > 0 and ε0 > 0 such that

F(u0(ε)) > Aε for ε < ε0.

Consider the energy function Eα0(θ) associated with the solution uα0

defined in (2.5) with ε2 =
1
|λ|

. It satisfies

Eα0(0) =
1
ε2 F(α0) and Eα0(T0) =

1
ε2 F(u0(ε)). (2.21)

Integration of E′α0
over (0,T0) yields

F(u0(ε)) − F(α0) = −2ε2
∫ T0

0

cos(2θ)
sin(2θ)

u′ε(θ)
2 dθ.

Define

J1(ε) = −2ε2
∫ π

4

0

cos(2θ)
sin(2θ)

u′ε(θ)
2 dθ,

J2(ε) = −2ε2
∫ T0

π
4

cos(2θ)
sin(2θ)

u′ε(θ)
2 dθ.

(2.22)

The expression for F(u0(ε)) then becomes

F(u0(ε)) = F(α0) + J1(ε) + J2(ε). (2.23)

The following lemmas are used to estimate the terms on the right hand side of
(2.23).
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Let κ > 0 be a constant such that

s5 − s + κs < 0 for 0 < s < 1/2. (2.24)

Write θ = T0 + εs and let zε(s) = uε(θ). Then zε solves problem (2.13).
By Lemma 2.3.3 we know that if Z0 is the solution of (2.7)-(2.8) such that
Z(0) = 31/4, then there is a s0 < 0 such that Z0(s0) = 1/4 and hence zε(s0) =

uε(T0 + εs0)→ 1/4 as ε → 0. It follows that for ε small enough,

uε(T0 + εs0) <
1
2
.

Let t0 = T0 + εs0, with ε so that π
4 < t0 < T0 . Since u is increasing on (0,T0),

it yields

uε(θ) <
1
2

and u5
ε (θ) − uε(θ) + κuε(θ) < 0 (2.25)

for 0 < θ < t0.

Lemma 2.4.2. Suppose uε is a solution of problem (2.18) which is monotone
on an interval [t1 − δ, t1 + δ] ⊂ (0, π/2) and uε(t1 ± δ) < 1/2. Then there exists
a constant β > 0 and ε1 > 0 such that if ε ∈ (0, ε1) then

uε(t1) ≤ e−
β
ε .

Proof. Suppose that uε is increasing on (t1 − δ, t1 + δ) and choose K such that
cos(2θ)
sin(2θ) + K < 0 for θ ∈ (t1 − δ, t1 + δ). Let ϕε the solution of problem (2.6)
centered in t1. Let v = ϕε − uε . Thus the function v satisfies

ε2v′′ − 2ε2Kv′ − κv = −ε2u′′ε + 2ε2Ku′ε + κuε
= 2ε2( cos(2θ)

sin(2θ) + K)u′ε + u5
ε − uε + κuε

< 2ε2( cos(2θ)
sin(2θ) + K)u′ε

≤ 0,

(2.26)

for θ ∈ (t1 − δ, t1 + δ) because u′ε ≥ 0. Moreover v(t1 ± δ) > 0. Then it
follows from the minimum principle that v(θ) > 0 for all θ in the interval, and
in particular for θ = t1. It follows from Lemma 2.3.1 that there exist β, ε1 > 0
such that if ε < ε1

uε(t1) < ϕε(t1) < e−β/ε .

The case when uε is decreasing is proved similarly, picking K such that
cos(2θ)
sin(2θ) + K > 0. �

Then there exists an interval (π/4 − δ, π/4 + δ) where the solution uε of
problem (2.18) is strictly increasing and so uε(π/4 ± δ) < 1/2. From Lemma
2.4.2 it follows that if ε < ε1, then

uε (π/4) ≤ e−
β
ε . (2.27)
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Lemma (A). There exist positive constants A and ε0 such that

|J1(ε)| < Aε−2e−
2β
ε for ε < ε0.

Proof. Let θ < π
4 . Integration of Eq. (2.18) over (0, θ) yields

ε2u′ε(θ) = −2
∫ θ

0

cos(2s)
sin(2s)

u′ε(s) ds +

∫ θ

0
(uε(s) − uε(s)5) ds.

Since u > 0 on (0, π/4) we have

ε2u′ε(θ) < −2
∫ θ

0

cos(2s)
sin(2s)

u′ε(s) ds +

∫ θ

0
uε(s) ds.

Note that cos(2s)
sin(2s) > 0 for s ∈ (0, θ) and uε is increasing on (0, π/4).

Consequently
u′ε(θ) < ε

−2uε(π/4)θ,

and by previous remark we have

u′ε(θ)
2 < ε−4uε(π/4)2θ2 < ε−4e−2β/εθ2,

for all ε < ε1. Finally

|J1(ε)| = 2ε2
∫ π

4

0

cos(2θ)
sin(2θ)

u′ε(θ)
2 dθ.

< 2ε−2e−2β/ε
∫ π

4

0

cos(2θ)
sin(2θ)

θ2 dθ.
(2.28)

Let A := 2
∫ π

4

0

cos(2θ)
sin(2θ)

θ2 dθ > 0. Then we have |J1(ε)| < Aε−2e−2β/ε . �

Lemma (B). There exist constants B and ε0 > 0 such that

J2(ε) ≥ Bε for ε < ε0.

Proof. We shall see that

B := lim inf
ε→0

1
ε

J2(ε) > 0.

Replacing uε by zε in (2.22), we have

J2(ε) = −2ε
∫ 0

( π4−T0)/ε

cos(2T0 + 2sε)
sin(2T0 + 2sε)

z′ε(s)2 ds.
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Let Z0 be the solution of problem (2.7)-(2.8) with Z(0) = σ. It follows from
Lemma 2.3.3 that for any L > 0:∫ 0

−L

cos(2T0 + 2sε)
sin(2T0 + 2sε)

z′ε(s)2 ds→
cos(2T0)
sin(2T0)

∫ 0

−L
Z′0(s)2 ds,

as ε → 0. Note that if
π
4−T0

ε
< −L < 0 then we have that

1
ε

J2(ε) ≥ −2
∫ 0

−L

cos(2T0 + 2sε)
sin(2T0 + 2sε)

z′ε(s)2 ds.

Then

B := lim inf 1
ε
J2(ε) ≥ −2 lim inf

∫ 0

−L

cos(2T0 + 2sε)
sin(2T0 + 2sε)

z′ε(s)2 ds

= −2 limε→0

∫ 0

−L

cos(2T0 + 2sε)
sin(2T0 + 2sε)

z′ε(s)2 ds

= −2 cos(2T0)
sin(2T0)

∫ 0

−L
Z′0(s)2 ds > 0.

(2.29)

�

Lemma (C). For ε small enough, there exists a positive constant C such that

|F(α0(ε))| ≤ Ce−
2β
ε .

Proof. Since uε is increasing on (0, π/4) it follows from (2.27) that

α(ε) < uε(π/4) ≤ e−
β
ε for ε < ε1,

and since |F| is increasing on (0, 1) it results that for ε small enough

|F(α(ε))| < |F(e−
β
ε )| ≤

κ

2
e−

2β
ε .

�

From Lemmas (A), (B) and (C) it follows that

F(u0(ε)) = F(α0) + J1(ε) + J2(ε),

with
|J1(ε)| < Aε−2e−2β/ε , J2(ε) ≥ Bε, |F(α0(ε))| ≤ Ce−2β/ε

for ε small enough. This completes the proof of Lemma 2.4.1.
�

Fixed T0 ∈ (π4 ,
π
2 ), we considered the solution uε of problem (2.18) that

reaches its first maximum at θ = T0 and we have proved that for ε is small
enough uε(T0) > σ. Next we show that the solution hits the θ-axis shortly
after T0.
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Figure 2.3: One-spike solution u of problem (2.1) with uε(τ1) > σ.

Lemma 2.4.3. There exists a constant ε0 > 0 such that for all 0 < ε < ε0

there exists τε < π
2 with the following properties:

uε(τε) = 0,

and {
u′ε(θ) > 0 for 0 < θ < T0,
u′ε(θ) < 0 for T0 < θ < τε .

(2.30)

Moreover
|T0 − τε | = O(

√
ε) when ε → 0. (2.31)

Proof. Recall that uε has the following properties at T0:

uε(T0) > σ and u′ε(T0) = 0.

From Eq. (2.18) it is easy to see that there is a constant C > 0 such that

u′′ε (θ) < −
C
ε2 (2.32)

for all θ > T0 while uε(θ) > σ. Integration of (2.32) over (T0, θ) yields

u′ε(θ) < −
C
ε2 (θ − T0).

We know that |u0(ε)| < M for all ε small and for some M > 0. Then

uε(θ) − u0(ε) < −
C

2ε2 (θ − T0)2. (2.33)
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Since u0(ε) > σ and u is decreasing while θ > T0 and uε(θ) > 1, there exists
τσ > T0 such that

uε(τσ) = σ and u′ε(τσ) < 0.

Taking θ = τσ in (2.33) it follows that

σ − u0(ε) < −
C

2ε2 (τσ − T0)2.

Finally we have
|τσ − T0| = O(ε). (2.34)

Next we use the energy function associated with uε defined in (2.5). If
θ ∈ (π4 ,

π
2 ), then E′ε satisfies

E′ε(θ) = −2
cos(2θ)
sin(2θ)

u′ε(θ)
2 > 0.

Consequently integration of E′ε(θ) over (T0, τσ) yields

0 <
u′ε(τσ)2

2
−

1
ε2 F(u0(ε)).

Therefore from Lemma 2.4.1 it follows:

u′ε(τσ)2 >
2
ε2 F(u0(ε)) >

A
ε
. (2.35)

Define
τε = sup{T0 < θ <

π

2
: uε > 0 and u′ε < 0 on (T0, θ)},

and integrate E′ε over (τσ, θ) with τσ < θ < τε . Then

u′ε(θ)
2

2
+

1
ε2 F(uε(θ)) >

u′ε(τσ)2

2
. (2.36)

Since F(uε(θ)) < 0 and u′ε(τσ) < 0, it follows from (2.35) and (2.36) that

u′ε(θ) < u′ε(τσ) < −

√
A
ε

for τσ < θ < τε .

Now we have:
|τε − τσ| = O(

√
ε). (2.37)

Write
|τε − T0| = |τε − τσ| + |τσ − T0|. (2.38)

Putting the estimates (2.34)-(2.37) into (2.38) we obtain the estimate (2.31).
�
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This result allows us to establish the following

Proposition 2.4.4. For ε small enough there exists α0 ∈ A(ε) such that the
solution uα0,ε of problem (2.18) with initial value α0(ε) has exactly one spike.

Let A1(ε) the connected components of A(ε) such that the solutions uα,ε
with α ∈ A1(ε) have exactly one spike. By the previous proposition for ε
small enoughA1(ε) is not empty.

Proposition 2.4.5. Let (α−1 , α
+
1 ) ⊂ (0, 1) be any connected component ofA1(ε)

and let Θ(α, ε) be as in (2.19). Then

lim
α→α±1

Θ(α, ε) =
π

2
.

Proof. Suppose that the assertion of Proposition 2.4.5 is not true, so that
there exists a sequence {αn} which converges to, say α−1 , such that Θ(αn, ε)
converges to a point θ∞ < π

2 . Then, by continuity Θ(α−1 , ε) = θ∞ and therefore
α−1 ∈ A(ε), which contradicts the definition of α−1 .

�

This proposition enables us to define:

Θ1
min,ε = min{Θ(α, ε) : α ∈ A1(ε)}.

Proposition 2.4.6.
lim
ε→0

Θ1
min,ε =

π

4
. (2.39)

Proof. In order to prove Proposition 2.4.4 we introduced an arbitrary point
T0 >

π
4 . We may choose this point arbitrarily close to π

4 . In Lemma 2.4.3 it
has been shown that by choosing ε small enough, we can achieve that τε is
arbitrary close to T0. Then we have (2.39). �

It follows from Proposition 2.4.6 that, given θ1 ∈ (π4 ,
π
2 ), there exists ε1 > 0

such that if ε < ε1, then
π

4
< Θ1

min,ε < θ1.

Let Γ1(ε) = {(α,Θ(α, ε)) : α ∈ (α−1 , α
+
1 )}, where (α−1 , α

+
1 ) is a connected

component of A1(ε) such that min{Θ(α, ε) : α ∈ (α−1 , α
+
1 )} < θ1. Hence Γ1(ε)

intersects the line θ = θ1 at least twice for all ε < ε1. This yields at least
two α1(ε), α2(ε) ∈ A1(ε) such that uα1(ε), uα2(ε) are solutions of problem (2.18)
having exactly one spike, and this completes the proof of Theorem 0.1.2 for
the case k = 1. In others words, we have proved that for ε small enough there
are at least two solutions with a single spike.

Now we prove Theorem 0.1.2 for k = 2 in a similar way. We shall prove
that given any θ1 > π/4 there exists ε2 > 0 such that if ε < ε2, then problem
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Figure 2.4: Two-spike solution u of problem (2.1) with u0(ε) ≥ σ

(2.18) has at least two solutions with initial value on (0, 1) that have exactly
two spikes.

Repeating the argument we fix T0 ∈ (π4 , θ1). For ε small enough we find
an initial value α0 ∈ (0, 1) such that

τ3(α0) = T0.

Write α0 = α0(ε); uε(θ) = uα0(ε)(θ); u0(ε) = uε(T0) and τk(α0(ε)) = τk(ε). Then

τ1(ε) < τ2(ε) < τ3(ε) = T0. (2.40)

We have the following results:

Lemma 2.4.7.
lim sup
ε→0

τ1(ε) ≤
π

4
. (2.41)

Proof. Let τ+ = lim supε→0 τ1(ε). Note that τ+ ≤ T0 and suppose that
π
4 < τ+ ≤ T0. Then, repeating the previous argument with T0 replaced
by τ+, we find that for ε small enough, the solution uε has a zero τε in a
right neighbourhood of τ+ and is strictly decreasing on (τ+, τε). Since, by
construction, uε has a local maximum at T0 for every ε > 0, which lies above
the line u = 1, this is not possible. This completes the proof. �

Lemma 2.4.8. Let uε be a 2-spike solution of (2.18) with τ2(ε) the second
critical point. Then there are constants β > 0 and ε1 > 0 such that

uε(τ2(ε)) ≤ e−
β
ε for ε < ε1.
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Proof. From (2.40) and (2.41) follows that for any fixed ε > 0 there exists
δ > 0 (independent of ε small enough) such that

either |τ2(ε) − T0| > 2δ, (2.42)
or |τ2(ε) − π/4| > 2δ. (2.43)

Assume that we have (2.42) and let t1 be such that

(t1 − δ, t1 + δ) ⊂ (τ2(ε),T0) and uε(t1 ± δ) < 1/2.

Then u is increasing on (t1 − δ, t1 + δ) and it follows from Lemma 2.4.2 that

uε(τ2(ε)) < uε(t1) < e−β/ε ,

where β does not depend on ε. The case in which δ satisfies (2.43) is
analogous (note that the constant 1/2 used in Lemma 2.3.1 and Lemma 2.4.2
can be replaced for any other positive constant, as long as it is independent of
ε). �

Lemma 2.4.9.
lim
ε→0

T0 − τ2(ε)
ε

= ∞.

Proof. Note that uε is a positive solution of the equation

u′′ε (θ) + 2
cos(2θ)
sin(2θ)

u′ε(θ) =
uε(θ) − uε(θ)5

ε2 (2.44)

such that

uε(τ2(ε)) = e−β̃/ε u′ε(τ2(ε)) = 0 uε(T0) = u0(ε) u′ε(T0) = 0.

We want to show that uε(τ2(ε) +
√
ε) < 1, because uε is increasing in the

interval (τ2(ε),T0) and uε(τ2(ε)) < 1 < uε(T0). This means that uε cannot
catch up u0(ε) in the interval (τ2(ε), τ2(ε) +

√
ε). Then

T0 − τ2(ε)
ε

>

√
ε

ε
→ ∞ when ε → 0.

To see that, consider the linear auxiliary problem:

w′′(θ) + 2
cos(2T0)
sin(2T0)

w′(θ) =
w(θ)
ε2 (2.45)

with initial conditions

w(τ2(ε)) = e−β̃/ε w′(τ2(ε)) = 0.
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Then by the Sturm Comparison Theory for all 0 < θ < T0, we have uε(θ) <
w(θ). In particular,

uε(τ2(ε) +
√
ε) < w(τ2(ε) +

√
ε).

Note that w(θ) = Aec1(θ−τ2(ε)) + Bec2(θ−τ2(ε)), where c1, c2 are the roots of the
equation ε2x2 − 2ε2Kx − 1 = 0, with K = −

cos(2T0)
sin(2T0) . Let µε = K2 + κ/ε2. Then

A, B are given by

A =
K −

√
ε

2
√
µε

e−β̃/ε , B =
K +

√
ε

2
√
µε

e−β̃/ε .

Finally we have

w(τ2(ε) +
√
ε) = ε−β̃/ε + (K −

√
µε)
√
ε +

K −
√
ε

2
√
µε

e−β̃/ε+2
√
µε
√
ε .

Consequently, for ε small enough w(τ2(ε) +
√
ε) < 1.

�

Integration of E′ε(θ) over (τ2(ε),T0) yields

F(u0(ε)) − F(uε(τ2(ε))) = J(ε),

where

J(ε) = −2ε2
∫ T0

τ2(ε)

cos(2θ)
sin(2θ)

u′ε(θ)
2dθ.

Then
F(u0(ε)) = F(uε(τ2(ε))) + J(ε). (2.46)

Next we show that there is a constant A > 0 such that F(u0(ε)) > Aε for ε
enough small.

Lemma (B̃). There is a constant C1 > 0 such that

J(ε) > C1ε

for ε small enough.

Proof. To prove this lemma we may assume that τ2(ε) > π/4, because when
τ2(ε) < π/4, the proof operates in the same way as before. Write θ = T0 + εs
and zε(s) = uε(θ) and replace u by z in J. Then, zε solves problem (2.13) and

J(ε) = −2ε
∫ 0

τ2(ε)−T0
ε

cos(2T0 + 2sε)
sin(2T0 + 2sε)

z′ε(s)2ds.
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It follows from Lemma 2.3.3 and Lemma 2.4.9 that for any 0 < L < (T0 −

π/4)/ε

C1 := lim inf 1
ε
J(ε) ≥ −2 limε→0

∫ 0

−L

cos(2T0 + 2sε)
sin(2T0 + 2sε)

z′ε(s)2 ds

= −2 cos(2T0)
sin(2T0)

∫ 0

−L
Z′0(s)2 ds > 0.

(2.47)

�

The following lemma will be needed in order to complete the proof and
follows immediately from Lemma 2.4.8.

Lemma (C̃). There is a constant C2 > 0 such that

|F(uε(τ2(ε)))| < C2e−β/2ε

for ε small enough.

From Lemmas (B̃), (C̃) and the Eq. (2.46) we can see that F(u0(ε)) > 0
for ε enough small. Then it follows that u0(ε) ≥ σ and we can repeat the
argument in Lemma 2.4.3 to prove that uε has a zero τε ∈ (T0,

π
2 ) such that

|T0 − τε | = O(
√
ε). It allows us to establish the following

Proposition 2.4.10. For ε small enough there exists α0 ∈ A(ε) such that the
solution uα0(θ) of problem (2.18) with initial value α0 has exactly two spikes,
whereA(ε) is the set defined in (2.20).

Let A2(ε) be the connected components of A(ε) such that the solutions
uα,ε with α ∈ A2(ε) have exactly two spikes. The proof of Theorem 0.1.2 for
k = 2 results from the following propositions.

Proposition 2.4.11. Let (α−2 , α
+
2 ) ⊂ (0, 1) be any connected component of

A2(ε) and Θ(α, ε) as in (2.19). Then

lim
α→α±2

Θ(α, ε) =
π

2
.

Now we can define:

Θ2
min,ε = min{Θ(α, ε) : α ∈ A2(ε)}.

Proposition 2.4.12.
lim
ε→0

Θ2
min,ε =

π

4
. (2.48)
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Then it follows as in the case k = 1 that there are at least two α1(ε), α2(ε) ∈
A2(ε) such that uα1(ε), uα2(ε) are solutions of problem (2.18) having exactly two
spikes, and thus completes the proof of Theorem 0.1.2 for k = 2.

Finally, we turn to solutions with k spikes. They are located at the points
{τ2 j−1 : j = 1, 2, . . . , k}. In the construction we fix τ2k−1 = T0 and we show
that lim sup τ2(k−1)−1 ≤ π/4. Consequently F(u0(ε)) > 0 and there exists α0(ε)
such that the solution of (2.18) uε,α0(ε) has k spikes. This can be done with the
methods developed in this section. Let Ak(ε) be the connected components
of A(ε) which contains the solutions with k spikes. Let (α−k , α

+
k ) ⊂ (0, 1) be

any connected component ofAk(ε). Then it can be shown that

lim
α→α±k

Θ(α, ε) =
π

2
.

Now we can define Θk
min,ε = min{Θ(α, ε) : α ∈ Ak(ε)} and it turns out that

lim
ε→0

Θk
min,ε =

π

4
.

It follows that, given θ1 ∈ (π4 ,
π
2 ) we have that for ε small enough

π

4
< Θk

min,ε < θ1.

Then exactly as in the cases k = 1 and k = 2 we obtain at least two
solutions of problem (2.18) having exactly k spikes. This completes the proof
of Theorem 0.1.2.

Resumen del Capı́tulo
En este capı́tulo estudiamos el siguiente problema:


u′′(θ) + 2 cos(2θ)

sin(2θ) u′(θ) = λ
(
u(θ)5 − u(θ)

)
, u > 0 on (0, θ1),

u′(0) = 0,
u(θ1) = 0,

donde u : [0, θ1] → R. Primero probamos un teorema de no existencia de
soluciones:

Theorem 2.4.13. Si θ1 ∈ (0, π/4), entonces no hay soluciones del problema
con valor inicial en el intervalo (0, 1).

Luego probamos el teorema que se enuncia a continuación, basándonos
principalmente en un método que se ha utilizado con éxito en [14]:
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Theorem 2.4.14. Dado cualquier entero positivo k y cualquier θ1 > π/4,
existe una constante Ak > 0 tal que para λ < −Ak el problema dado tiene al
menos 2k soluciones con valor inicial en el intervalo (0, 1).

Primero usamos este método para mostrar que existen al menos 2
soluciones a este problema con valor inicial en el intervalo (0, 1) que tienen un
solo pico o máximo. El siguiente paso es probar el teorema en el caso k = 2
usando las mismas técnicas. Finalmente el teorema sigue por inducción.

El capı́tulo está organizado de la siguiente forma. En la sección 2.2
demostramos el teorema de no existencia. La sección 2.3 contiene algunos
resultados sobre problemas lineales auxiliares, que nos ayudarán a probar el
teorema principal en la siguiente sección.

También estamos interesados en estudiar soluciones de la ecuación
invariante por la acción T2 en toda la esfera S3. En la sección 2.4 demostramos
un resultado sobre multiplicidad de soluciones para este caso especial, junto
con la demostración del teorema 2.4.14.



Chapter 3

The Yamabe equation on a
product manifold

3.1 Introduction
In this chapter we will use Lyapunov-Schmidt reduction techniques to prove
the multiplicity results for the Yamabe equation in Riemannian products,
proving Theorem 0.2.1.

Let (Mn, g) be any closed manifold and (Nm, h) a manifold of constant
positive scalar curvature sh. We will be interested in positive solutions of the
Yamabe equation for the product manifold (M × N, g + ε2h):

−a(∆g + ∆ε2h)u + (sg + ε−2sh)u = up−1, (3.1)

with a = am+n =
4(m+n−1)

m+n−2 , p = pm+n =
2(m+n)
m+n−2 , sg the scalar curvature of (Mn, g),

and ε small enough so that the scalar curvature sg + ε−2sh is positive. The
conformal metric up−2(g + ε2h) then has constant scalar curvature.

By restricting our study to solution functions that depend only on the first
factor, u : M → R, and by normalizing h so that sh = a, we note that solving
the Yamabe equation is equivalent to solving:

−ε2∆gu +

( sg

a
ε2 + 1

)
u = up−1. (3.2)

We will study the general equation

−ε2∆gu +
(
λsgε

2 + 1
)

u = up−1, (3.3)

where λ ∈ R. Positive solutions of this equation are the critical points of the
functional Jε : H1,2(M)→ R, given by

Jε(u) = ε−n
∫

M

(
1
2
ε2|∇u|2 +

1
2

(
ε2λsg + 1

)
u2 −

1
p

(u+)p

)
dVg,

45
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where u+(x) = max{u(x), 0}.
Our goal is to obtain solutions of the equation for ε small. We will build

solutions by using the Lyapunov-Schmidt reduction procedure which was
applied by several authors (see [15] and [26]).

To explain the construction one first considers what will be called the limit
equation in Rn. Recall that for 2 < q < 2n

n−2 , n > 2, the equation

−∆U + U = Uq−1 in Rn (3.4)

has a unique (up to translations) positive solution U ∈ H1(Rn) that vanishes
at infinity. Such function is radial and exponentially decreasing at infinity,
namely

lim
|x|→∞

U(x)|x|
n−1

2 e|x| = c > 0 (3.5)

lim
|x|→∞

|∇U(x)| |x|
n−1

2 e|x| = c. (3.6)

See reference [24] for details. We will denote this solution by U in the
following.

Note that for any ε > 0, the function Uε(x) = U( x
ε
), is a solution of

−ε2∆Uε + Uε = Uq−1
ε .

We define the following constant associated with the solution of the limit
equation U:

βλ := λ

∫
Rn

U2(z) dz −
1

n(n + 2)

∫
Rn
|∇U(z)|2|z|2 dz. (3.7)

The sign of βλ is fundamental to understand the role of the critical points
of the scalar curvature.

For any x ∈ M consider the exponential map expx : TpM → M. Since
M is closed we can fix r0 > 0 such that expx

∣∣∣
B(0,r0)

: B(0, r0) → Bg(x, r0) is
a diffeomorphism for any x ∈ M. Here B(0, r) is the ball in Rn centered at
0 with radius r and Bg(x, r) is the ball in M centered at x with radius r with
respect to the distance induced by the metric g:

dg(x, y) = exp−1
x (y).

Let χr be a smooth cut-off function such that χr(z) = 1 if z ∈ B(0, r/2),
χr(z) = 0 if z ∈ Rn \ B(0, r), |∇χr(z)| < 2/r and |∇2χr(z)| < 2/r2.

For any r < r0 fixed, a point ξ ∈ M and ε > 0 let us define on M the
function

Wε,ξ(x) =

{
Uε(exp−1

ξ (x))χr(exp−1
ξ (x)) i f x ∈ Bg(ξ, r),

0 otherwise.
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We will prove that if βλ < 0 then there exists a critical point ξε of Jε . If
βλ > 0 one can prove the same result replacing the isolated local minimum of
the scalar curvature by an isolated local maximum. Then we have

Theorem 3.1.1. Assume that βλ , 0. If βλ < 0 ( βλ > 0) then let ξ0 be an
isolated local maximum (minimum) point of the scalar curvature S g. For each
positive integer k0, there exists ε0 = ε0(k0) > 0 such that for each ε ∈ (0, ε0)
there exist points ξε1, . . . , ξ

ε
k0
∈ M such that

dg(ξεi , ξ
ε
j)

ε
→ +∞ and dg(ξ0, ξ

ε
j)→ 0, as ε → 0, (3.8)

and a solution uε of problem (3.3) such that

‖uε −
k0∑

i=1

Wε,ξεi
‖ε → 0 as ε → 0.

The Yamabe constant of these products tends to the Yamabe constant of
the product with Rn. Then the limit of this constant is m(E). In [33] it is
proved that the equation has Cat(M) solutions with energy close to m(E).

Note that for the Yamabe equation on (M × N, g + ε2h) the constant β
become:

β =
n + m − 2

4(n + m − 1)

∫
Rn

U2(z) dz −
1

n(n + 2)

∫
Rn
|∇U(z)|2|z|2 dz. (3.9)

So it depends only on n,m. We have not been able to find an analytical proof
that β , 0 but we give the numerical computation of β for low values of m
and n in [36]. In all cases β < 0. Then, by the Theorem 0.2.1 we show the
multiplicity of metrics of constant scalar curvature in the product manifold
(M × N, g + ε2h).

The chapter is organized as follows. In Section 3.2 we will introduce
notation and background and discuss the finite dimensional reduction of
the problem by the Lyapunov-Schmidt procedure. Then we will construct
approximate solutions for the equation. In Sections 3.3 we will explain the
asymptotic expansion of the functional energy in terms of ε. The Section 3.4
is devoted to prove Theorem 0.2.1 assuming the technical Proposition 3.2.1,
which is proved in Section 3.5.

3.2 Approximate solutions and the reduction of
the equation

Positive solutions of (3.4) are the critical points of the functional E :
H1(Rn)→ R,

E( f ) =

∫
Rn

(
1
2
|∇ f |2 +

1
2

f 2 −
1
p

( f +)p

)
dx.
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Let S 0 = ∇E : H1(Rn) → H1(Rn). S 0(U) = 0 and the solution U is
non-degenerate in the sense that Kernel(S ′0(U)) is spanned by

ψi(x) :=
∂U
∂xi

(x)

with i = 1, . . . , n.
Note that for any ε > 0, the function Uε(x) = U( x

ε
), is a solution of

−ε2∆Uε + Uε = U p−1
ε , (3.10)

and so it is a critical point of the functional

Eε( f ) = ε−n
∫
Rn

(
ε2

2
|∇ f |2 +

1
2

f 2 −
1
p

( f +)p

)
dx.

If S 0ε = ∇Eε then Kernel(S 0
′
ε(Uε)) is spanned by the functions

ψi
ε(x) := ψi(ε−1x)

with i = 1, . . . , n.
Let us define on M the functions

Zi
ε,ξ(x) :=


ψi
ε(exp−1

ξ (x))χr(exp−1
ξ (x)) if x ∈ Bg(ξ, r),

0 otherwise.
(3.11)

Let Hε be the Hilbert space H1
g(M) equipped with the inner product

〈u, v〉ε :=
1
εn

(
ε2

∫
M
∇gu∇gv dµg +

∫
M

(ε2λsg + 1) uv dµg

)
,

which induces the norm

‖u‖2ε :=
1
εn

(
ε2

∫
M
|∇gu|2 dµg +

∫
M

(ε2λsg + 1) u2 dµg

)
.

Similarly on Rn we define the inner product for u, v ∈ H1
ε (Rn)

〈u, v〉ε :=
1
εn

(
ε2

∫
Rn
∇u∇v dz +

∫
Rn

uv dz
)
,

which induces the norm

‖u‖2ε :=
1
εn

(
ε2

∫
Rn
|∇u|2 dz +

∫
Rn

u2 dz
)
.
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It is important to note that ‖ fε‖ε is independent of ε, where as before
fε(x) = f ( x

ε
).

For ε > 0 and ξ = (ξ1, ..., ξk0) ∈ Mk0 let

Kε,ξ := span {Zi
ε,ξ j

: i = 1, . . . , n, j = 1, . . . , k0}

and

K⊥
ε,ξ

:= {φ ∈ Hε : 〈φ,Zi
ε,ξ j
〉ε = 0, i = 1, . . . , n, j = 1 . . . , k0}.

Let Πε,ξ : Hε → Kε,ξ and Π⊥
εξ

: Hε → K⊥
ε,ξ

be the orthogonal projections. In
order to solve equation (3.3) we call

S ε = ∇Jε : Hε → Hε .

Equation (3.3) is then S ε(u) = 0. The idea is that the kernel of S ′ε(Vε,ξ)
should be close to Kε,ξ and then the linear map φ 7→ Π⊥

εξ
S ′ε(Vε,ξ)(φ) : K⊥ →

K⊥ should be invertible. Then the Inverse Function Theorem would imply
that there is a unique small φ = φε,ξ ∈ K⊥

ε,ξ
such that (this is the content of

Proposition 3.2.1)

Π⊥
ε,ξ
{S ε(Vε,ξ + φ)} = 0. (3.12)

And then we have to solve the finite dimensional problem

Πε,ξ{S ε(Vε,ξ + φ)} = 0. (3.13)

Consider the function Jε : Mk0 → R defined by

Jε(ξ) := Jε(Vε,ξ + φε,ξ) .

We will show in Proposition 3.3.1 that (3.13) is equivalent to finding
critical points of Jε .

Let ξ0 ∈ M be an isolated local minimum point of the scalar curvature.
Let k0 ≥ 1 be a fixed integer. Given ρ > 0, ε > 0 we consider the open set

Dk0
ε,ρ :=

{
ξ ∈ Mk0 : dg(ξ0, ξi) < ρ, i = 1, . . . , k0,

k0∑
i, j

Uε

(
exp−1

ξi
ξ j

)
< ε2

}
.

(3.14)
Recall Uε

(
exp−1

ξi
ξ j

)
= U

(
ε−1 exp−1

ξi
ξ j

)
and that U is a radial, positive,

decreasing function. Then if ξε = (ξε1, ..., ξεk0
) ∈ Dk0

ε,ρ since ‖ exp−1
ξi
ξ j‖ =

dg(ξε i, ξε j) we have that

lim
ε→0

dg(ξε i, ξε j)

ε
= +∞. (3.15)
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Moreover for any δ > 0 we have

lim
ε→0

1
ε2 e−(1+δ)

dg(ξε i ,ξε j)
ε = 0. (3.16)

This follows from (3.5): if we had a > 0 and a sequence εi → 0 such that

e−(1+δ)
dg(ξε i ,ξε j)

ε > aε2,

then

e−
dg(ξε i ,ξε j)

ε > aε2eδ
dg(ξε i ,ξε j)

ε ,

and applying (3.5) to ε−1 exp−1
ξi
ξ j since U

(
ε−1 exp−1

ξi
ξ j

)
< ε2 we get

ε2
(dg(ξε i, ξε j)

ε

) n−1
2
> ce−

dg(ξε i ,ξε j)
ε > caε2eδ

dg(ξε i ,ξε j)
ε ,

giving a contradiction.
We will prove:

Proposition 3.2.1. There exists ρ0 > 0, ε0 > 0, c > 0 and σ > 0 such that for
any ρ ∈ (0, ρ0) , ε ∈ (0, ε0) and ξ ∈ Dk0

ε,ρ there exists a unique φε,ξ = φ(ε, ξ) ∈
K⊥
ε,ξ

which solves equation (3.12) and satisfies

‖φε,ξ‖ε ≤ c
(
ε2 +

∑
i, j

e−
(1+σ)dg(ξi ,ξ j)

2ε
)
. (3.17)

Moreover, ξ → φε,ξ is a C1- map. Note that by (3.16) ‖φε,ξ‖ε = o(ε).

The proof of the proposition is technical and follows the same lines used
in previous works, see [15, 18, 26]. For completeness we will sketch the proof
following the proof in [15], but we pospone it to Section 3.5. In the next two
sections we will prove Theorem 3.1.1 assuming this proposition.

On the Banach space Lq
g(M) consider the norm

|u|q,ε :=
( 1
εn

∫
M
|u|q dµg

)1/q
.

Since 2 < p < 2n
n−2 it follows from the usual Sobolev inequalities that there

exists a constant c independent of ε such that

|u|p,ε ≤ c‖u‖ε (3.18)

for any u ∈ Hε .
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We denote by Lp
ε the Banach space Lp

g(M) with the norm |u|p,ε . For p′ :=
p

p − 1
the dual space Lp

ε
∗ is identified with Lp′

ε with the pairing

〈ϕ, ψ〉 =
1
εn

∫
M
ϕψ,

for ϕ ∈ Lp
ε , ψ ∈ Lp′

ε .
The embedding ιε : Hε → Lp

ε is a compact continuous map and the adjoint
operator ι∗ε : Lp′

ε → Hε , is a continuous map such that

u = ι∗ε(v)⇔ 〈ι∗ε(v), ϕ〉ε =
1
εn

∫
M

vϕ, ϕ ∈ Hε ⇔

−ε2∆gu + (ε2λsg + 1)u = v (weakly) on M. (3.19)

Moreover for the same constant c in (3.18) we have that

‖ι∗ε(v)‖ε ≤ c|v|p′,ε (3.20)

for any v ∈ Lp′
ε .

Let

f (u) := (u+)p−1.

Note that
S ε(u) = u − ι∗ε( f (u)) , u ∈ Hε , (3.21)

and we can rewrite problem (3.3) in the equivalent way

u = ι∗ε( f (u)) , u ∈ Hε . (3.22)

Note that a solution to (3.22) is a critical point of Jε and so it is a positive
function.

Now we will discuss some estimates related to the approximate solutions.
The estimates are similar to ones obtained in [15, 26] and we refer the reader
to these articles for details.

The next lemma gives an explicit sense in which Wε,ξ is an approximate
solution of equation (3.3):

Lemma 3.2.2. There exists a constant c and ε0 > 0 such that for any ε ∈
(0, ε0), ξ ∈ M,

‖S ε(Wε,ξ)‖ε ≤ cε2.

Proof. Let Yε,ξ = −ε2∆gWε,ξ + (ε2λsg + 1)Wε,ξ, so that by (3.19) we get Wε,ξ =

ι∗ε(Yε,ξ). Then
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‖S ε(Wε,ξ)‖ε = ‖ι∗ε( f (Wε,ξ)) −Wε,ξ‖ε

= ‖ι∗ε( f (Wε,ξ) − Yε,ξ)‖ε ≤ c| f (Wε,ξ) − Yε,ξ |p′,ε

≤ c| f (Wε,ξ) + ε2∆gWε,ξ −Wε,ξ |p′,ε + c|ε2λsgWε,ξ |p′,ε .

But

|Wε,ξ |p′,ε =

(
ε−n

∫
B(0,r)

(Uεχr)p′
) 1

p′

≤ c
(∫

B(0,r/ε)
(Uχr(εz))p′dz

) 1
p′

≤ c̄
(∫
Rn

U p′dz
) 1

p′

≤ ¯̄c.

Then

|ε2sgWε,ξ |p′,ε ≤ Cε2.

In [26, Lemma 3.3] it is proved that

| f (Wε,ξ) + ε2∆gWε,ξ −Wε,ξ |p′,ε ≤ Cε2,

and the lemma follows.
�

Since the function U is radial it follows that if i , j then 〈ψi
ε , ψ

j
ε〉ε = 0.

Then it is easy to see that for any ξ ∈ M

lim
ε→0
〈Zi

ε,ξ, Z j
ε,ξ〉ε = δi j

∫
Rn

(|∇ψl|2 + (ψl)2) dz. (3.23)

Let us call C =

∫
Rn

(|∇ψl|2 + (ψl)2) dz.

Given ξ ∈ M and normal coordinates (x1, ..., xn) around ξ it also follows
that

lim
ε→0

ε
∥∥∥∥∂Wε,ξ

∂xk

∥∥∥∥
ε

= C, (3.24)

lim
ε→0

ε
〈
Zi
ε,ξ,

∂Wε,ξ

∂xk

〉
ε

= δikC, (3.25)

and
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lim
ε→0

ε
∥∥∥∥∂Zi

ε,ξ

∂xk

∥∥∥∥
ε

=

∫
Rn

(|∇
∂ψi

∂xk
|2 + (

∂ψi

∂xk
)2) dz. (3.26)

The previous estimates deal with one peak approximations. For the
multipeak approximate solutions Vε,ξ with ξ ∈ Dk0

ε,ρ consider normal
coordinates (xi

1, ..., x
i
n) around each ξi (i=1,...,k0). Note that if i , j:

∂

∂y j
h

Zl
ε,ξi(yi) =

∂

∂y j
h

Wε,ξi(yi) = 0. (3.27)

Also since the points are appropriately separated by (3.15) and the
exponential decay of U (3.5), (3.6), it follows that if i , j,

〈Zl
ε,ξ j
,
∂

∂yi
h

Wε,ξi(yi)〉ε = o(1). (3.28)

3.3 The asymptotic expansion of Jε
For ξ ∈ Dk0

ε,ρ we consider the unique φε,ξ = φ(ε, ξ) ∈ K⊥
ε,ξ

given by Proposition

3.2.1 and define as before, Jε(ξ) = Jε(Vε,ξ +φε,ξ). In this section we will prove
the following:

Proposition 3.3.1. For ξ ∈ Dk0
ε,ρ we have

Jε(ξ) = k0α + (1/2)βλ ε2
k0∑

i=1

sg(ξi) −
1
2

k0∑
i, j,i, j=1

γi jU(
exp−1

ξi
ξ j

ε
) + o(ε2), (3.29)

C0-uniformly with respect to ξ in compact sets of Dk0
ε,ρ as ε goes to zero, where

α :=
1
2

∫
Rn
|∇U(z)|2 dz +

1
2

∫
Rn

U2(z) dz −
1
p

∫
Rn

U p(z) dz, (3.30)

γi j :=
∫
Rn

U p−1(z)e〈bi j,z〉dz (3.31)

with |bi j| = 1 and

βλ := λ

∫
Rn

U2(z) dz −
1

n(n + 2)

∫
Rn
|∇U(z)|2|z|2 dz. (3.32)

Moreover, if ξε is a critical point of Jε , then the function Vε,ξε
+ φε,ξε is a

solution to problem (3.3).



54 CHAPTER 3. ON A PRODUCT MANIFOLD

For a point ξ ∈ M we will identify a geodesic ball around it with a ball in
Rn by normal coordinates. We denote by gi j the expression of the metric g in
these coordinates and consider the higher order terms in the Taylor expansions
of the functions gi j. We will need the following lemma which is proved for
instance in [20]:

Lemma 3.3.2. In a normal coordinates neighborhood of ξ0 ∈ M, the Taylor’s
series of g around ξ0 is given by

gξ i j(z) = δi j +
1
3

Rki jl(ξ)zkzl + O(|z|3),

as |z| → 0. Moreover,

gi j
ξ (z) = δi j −

1
3

Rki jl(ξ)zkzl + O(|z|3).

Furthermore, the volume element on normal coordinates has the following
expansion √

det gξ(z) = 1 −
1
6

Rkl(ξ)zkzl + O(|z|3).

Lemma 3.3.3. For ξ ∈ M and ε > 0 small we have

Jε(Wε,ξ) = α +
βλ
2
ε2sg(ξ) + o(ε2). (3.33)

Proof. By direct computation

Jε(Wε,ξ) =
1
εn

∫
M

[1
2
ε2

∣∣∣∇gWε,ξ

∣∣∣2 +
1
2

(ε2λsg + 1)W2
ε,ξ −

1
p

∣∣∣∣Wε,ξ

∣∣∣∣p] dµg

=
1
εn

∫
M

[1
2
ε2

∣∣∣∇gWε,ξ

∣∣∣2 +
1
2

W2
ε,ξ −

1
p

∣∣∣∣Wε,ξ

∣∣∣∣p] dµg

+
1
εn

∫
M

1
2
ε2λsg(x)Wε,ξ(x)2 dµg = J + I

We first estimate I. Let x = expξ(εz) with z ∈ B(0, r
ε
). Then doing the

change of variables we obtain the expression

2I = ε−nε2λ

∫
Bg(0, r

ε )
sg(expξ(εz))

(
U(z)χr/ε(εz)

)2 √
det gξ(εz) εn dz.

By the exponential decay of U (3.5), we have

2I = ε2λ

∫
Bg(0, r√

ε
)
sg(expξ(εz))U(z)2

√
det gξ(εz) dz + o(ε2).
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We consider the Taylor’s expansions of g and sg around ξ. For instance

sg(expξ(z)) = sg(ξ) +
∂sg

∂zk
(ξ)zk + O(|z|2)

as |z| → 0 . Therefore if |z| < r
√
ε

for some fixed r ¿ 0, then

sg(expξ(εz)) = sg(ξ) +
∂sg

∂zk
(ξ)εzk + O(ε).

Then

2I = ε2λsg(ξ)
∫

Bg(0, r√
ε
)
U(z)2 dz + o(ε2).

And using again the exponential decay of U we get

2I = ε2λsg(ξ)
( ∫
Rn

U2(z) dz
)

+ o(ε2). (3.34)

By Lemma 5.3 of [26] we have

J = α − ε2sg(ξ)
1
6

∫
Rn

(u′(|z|)
|z|

)2
z4

1 dz + o(ε2). (3.35)

Here we are using that U is a radial function, U(z) = u(|z|) for a function
u : [0,+∞) → R, and we identify |∇U(z)| = |u′(|z|)|. Using polar coordinates
to integrate ∫

Rn

(u′(|z|)
|z|

)2
z4

1 dz =

∫ +∞

0

∫
Sn−1(r)

(u′(r)
r

)2
z4

1 dS (y) dr

=

∫ +∞

0

(u′(r)
r

)2
rn−1

∫
Sn−1

(rz1)4 dS (y) dr =

∫ +∞

0
(u′(r))2rn+1 dr

∫
Sn−1

z4
1 dS (y).

For any homogeneous polynomial p(x) of degree d using the divergence
theorem one obtains (see Proposition 28 in [11] )∫

Sn−1
p(x) dS (x) =

1
d(d + n − 2)

∫
Sn−1

∆p(x) dS (x). (3.36)

Then

∫
Sn−1

z4
1 dS (z) =

1
4(n + 2)

∫
Sn−1

12z2
1 dS (z) =

3
n(n + 2)

∫
Sn−1

n∑
i=1

z2
1 dS (z)

=
3

n(n + 2)
Vn−1,
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where Vn−1 is the volume of Sn−1. Then we get∫
Rn

(u′(|z|)
|z|

)2
z4

1 dz =
3

n(n + 2)

∫
Rn
|∇U |2|z|2dz

and using (3.34), (3.35) the lemma follows.

�

Lemma 3.3.4.

Jε(ξ) = Jε(Vε,ξ + φε,ξ) = Jε(Vε,ξ) + o(ε2) (3.37)

C0- uniformly in compact sets of Dk0
ε,ρ.

Proof. If we let F(u) = 1
p (u+)p then

Jε(Vε,ξ + φε,ξ) − Jε(Vε,ξ)

=
1
2
‖φε,ξ‖

2
ε +

1
εn

∫
M

[ε2∇gVε,ξ∇gφε,ξ + (ε2λsg + 1)Vε,ξφε,ξ − f (Vε,ξ)φε,ξ]

−
1
εn

∫
M

[F(Vε,ξ + φε,ξ) − F(Vε,ξ) − f (Vε,ξ)φε,ξ].

Since φε,ξ ∈ K⊥
ε,ξ

and it satisfies (3.12)

0 = 〈φε,ξ, S ε(Vε,ξ + φε,ξ)〉ε = 〈φε,ξ, (Vε,ξ + φε,ξ) − ι
∗
ε( f (Vε,ξ + φε,ξ))〉ε

= ‖φε,ξ‖
2
ε +

1
εn

∫
M

[ε2∇gVε,ξ∇gφε,ξ + (ε2λsg + 1)Vε,ξφε,ξ − f (Vε,ξ + φε,ξ)φε,ξ.

Therefore

Jε(Vε,ξ + φε,ξ) − Jε(Vε,ξ) = −
1
2
‖φε,ξ‖

2
ε +

1
εn

∫
M

[ f (Vε,ξ + φε,ξ) − f (Vε,ξ)]φε,ξ

−
1
εn

∫
M

[F(Vε,ξ + φε,ξ) − F(Vε,ξ) − f (Vε,ξ)φε,ξ]. (3.38)

By Proposition 3.2.1 we get ‖φε,ξ‖
2
ε = o(ε2). By the Mean Value Theorem

we get for some t1, t2 ∈ [0, 1 ]

1
εn

∫
M

[ f (Vε,ξ + φε,ξ) − f (Vε,ξ)]φε,ξ =
1
εn

∫
M

f ′(Vε,ξ + t1φε,ξ)φ
2
ε,ξ, (3.39)
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and
1
εn

∫
M

[F(Vε,ξ + φε,ξ) − F(Vε,ξ) − f (Vε,ξ)φε,ξ]

=
1

2εn

∫
M

f ′(Vε,ξ + t2φε,ξ)φ
2
ε,ξ
. (3.40)

Moreover we have for any t ∈ [0, 1]

1
εn

∫
| f ′(Vε,ξ + tφε,ξ)|φ

2
ε,ξ
≤ c

1
εn

∫
V p−2
ε,ξ

φ2
ε,ξ

+ c
1
εn

∫
φ

p
ε,ξ

≤ c
1
εn

∫
φ2
ε,ξ

+ c
1
εn

∫
φ

p
ε,ξ
≤ C(‖φε,ξ‖

2
ε + ‖φε,ξ‖

p
ε ) = o(ε2). (3.41)

In the last inequality we use (3.18) and the last equality follows from
Proposition 3.2.1. This proves the lemma.

�

Lemma 3.3.5. For ξ ∈ Dk0
ε,ρ we have

Jε(Vε,ξ) = k0α +
1
2
βλ ε

2
k0∑

i=1

sg(ξi) −
1
2

∑
i, j

γi jU
(exp−1

ξ j
(ξi)

ε

)
+ o(ε2) (3.42)

Here

γi j :=
∫
Rn

U p−1(z)e〈bi j,z〉 dz,

where

bi j := lim
ε→0

exp−1
ξi
ξ j

| exp−1
ξi
ξ j|

.

Proof.

Jε(Vε,ξ) = Jε
( k0∑

i=1

Wε,ξi

)
=

1
εn

∫
M

[1
2
ε2

∣∣∣∇g

( k0∑
i=1

Wε,ξi

)∣∣∣2 +
1
2

(ε2λsg + 1)
( k0∑

i=1

Wε,ξi

)2
−

1
p

( k0∑
i=1

Wε,ξi

)p]
dµg

=
1
εn

k0∑
i=1

[ ∫
M

1
2
ε2

∣∣∣∇gWε,ξi

∣∣∣2 dµg+
1
2

∫
M

(ε2λsg+1)
(
Wε,ξi

)2
dµg−

1
p

∫
M

(
Wε,ξi

)p
dµg

]

+
1
εn

k0∑
i< j

[ ∫
M
ε2∇gWε,ξi∇gWε,ξ j dµg+

∫
M

(ε2λsg+1)Wε,ξiWε,ξ j dµg−

∫
M

(
Wε,ξi

)p−1
Wε,ξ j dµg

]
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−
1
εn

[
1
p

∫
M

( k0∑
i=1

Wε,ξi

)p
dµg−

1
p

k0∑
i=1

∫
M

(
Wε,ξi

)p
dµg−

k0∑
i< j

∫
M

(
Wε,ξi

)p−1
Wε,ξ j dµg

]
=: I1 + I2 + I3. (3.43)

By Lemma 3.3.3 we get

I1 = k0α +
βλ
2
ε2

k0∑
i=1

sg(ξi) + o(ε2).

Let us estimate the second term I2 in (3.43). We claim that I2 = o(ε2).

I2 =

k0∑
i< j

∫
M
ε2λsgWε,ξiWε,ξ j dµg +

1
εn

k0∑
i< j

[ ∫
M
ε2∇gWε,ξi∇gWε,ξ j dµg +

∫
M

Wε,ξiWε,ξ j dµg−

∫
M

(
Wε,ξi

)p−1
Wε,ξ j dµg

]
.

It is easy to see that the first term is o(ε2). The second term only involves
the Wε,ξ j’s and it is explicitly estimated in [15, Lemma 4.1]: it is shown there
that it is of the order of o(ε2). The term I3 also only involves the Wε,ξ j’s and it
is estimated in [15, Lemma 4.1]. They show

I3 = −
1
2

∑
i, j

γi jU
(exp−1

ξ j
(ξi)

ε

)
+ o(ε2).

This proves the lemma.
�

Proof of Proposition 3.3.1. The last two lemmas prove (3.29). We are left
to prove that if ξε = (ξ1, . . . , ξk0) is a critical point of Jε , then the function
Vε,ξε

+φε,ξε is a solution to problem (3.3). For α = 1, ..., k0 and xα ∈ B(0, r) we
let yα = expξα(xα) and y = (y1, . . . , yk0) ∈ Mk0 .

Since ξ is a critical point of Jε ,

∂

∂xαi
Jε(y(x))

∣∣∣∣
x=0

= 0, for α = 1, ..., k0, i = 1, ..., n. (3.44)

We write

S ε(Vε,y(x) + φε,y(x)) = Π⊥ε,yS ε(Vε,y(x) + φε,y(x)) + Πε,yS ε(Vε,y(x) + φε,y(x)).
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The first term on the right is of course 0 by the construction of φε,y(x). We
write the second term as

Πε,yS ε(Vε,y(x) + φε,y(x)) = Σi,αCi,α
ε Zi

ε,yα ,

for some functions Ci,α
ε : B(0, r)k0 → R. We have to prove that for each i, α

(and ε > 0 small), Ci,α
ε (0) = 0. Then fix i, α.

We have

0 =
∂

∂xαi
Jε(y(x)) = J′ε(Vε,y(x) + φε,y(x))[

∂

∂xαi
(Vε,y(x) + φε,y(x))] =

= 〈S ε(Vε,y(x) + φε,y(x)),
∂

∂xαi

∣∣∣∣
x=0

(Vε,y(x) + φε,y(x))〉ε

= 〈
∑
k,β

Ck,β
ε (0)Zk

ε,yβ ,
∂

∂xαi

∣∣∣∣
x=0

(Vε,y(x) + φε,y(x))〉ε . (3.45)

Since φε,ξ(y) ∈ K⊥
ε,ξ(y)

, for any k and β we have that 〈Zk
ε,yβ , φε,y(x)〉ε = 0. Then

lim inf
ε→0

|〈Zk
ε,yβ , (

∂

∂xαi
φε,y(x))

∣∣∣∣
y=0
〉ε | = lim inf

ε→0
| − 〈(

∂

∂xαi
Zk
ε,yβ)

∣∣∣∣
y=0
, φε,y(x)〉ε |

≤ lim inf
ε→0

‖(
∂

∂xαi
Zk
ε,yβ)

∣∣∣∣
y=0
‖ε · ‖φε,y(x)‖ε = 0, (3.46)

where the last equality follows from Proposition 3.2.1 and (3.26).
Now from (3.27)

〈
∑
k,β

Ck,β
ε (0)Zk

ε,yβ ,
∂

∂xαi

∣∣∣∣
x=0

Vε,y(x)〉ε (3.47)

= 〈
∑
k,β

Ck,β
ε (0)Zk

ε,yβ ,
∂

∂xαi

∣∣∣∣
x=0

Wε,yα(x)〉ε (3.48)

= 〈
∑

k

Ck,α
ε (0)Zk

ε,yα ,
∂

∂xαi

∣∣∣∣
x=0

Wε,yα(x)〉ε + 〈
∑
k,β,α

Ck,β
ε (0)Zk

ε,yβ ,
∂

∂xαi

∣∣∣∣
x=0

Wε,yα(x)〉ε .

(3.49)
It follows from (3.28) that

lim
ε→0
〈
∑
k,β,α

Ck,β
ε (0)Zk

ε,yβ ,
∂

∂xαi

∣∣∣∣
x=0

Wε,yα(x)〉ε = 0. (3.50)

Also
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〈
∑

k

Ck,α
ε (0)Zk

ε,yα ,
∂

∂xαi

∣∣∣∣
x=0

Wε,yα(x)〉ε = 〈Ci,α
ε (0)Zi

ε,yα ,
∂

∂xαi

∣∣∣∣
x=0

Wε,yα(x)〉ε

+〈
∑
k,i

Ck,α
ε (0)Zk

ε,yα ,
∂

∂xαi

∣∣∣∣
x=0

Wε,yα(x)〉ε .

Then it follows from (3.25) that

lim
ε→0

ε 〈
∑

k

Ck,α
ε (0)Zk

ε,yα ,
∂

∂xαi

∣∣∣∣
x=0

Wε,yα(x)〉ε = Ci,α
ε (0)C.

And then it follows from (3.45) that Ci,α
ε (0) = 0.

�

3.4 Proof of Theorem 0.2.1

Proof of Theorem 0.2.1. We will prove that if ξ̄ε ∈ Dk0
ε,ρ, is such that Jε(ξ̄ε) =

max{Jε(ξ̄) : ξ̄ ∈ Dk0
ε,ρ}, then ξ̄ε ∈ Dk0

ε,ρ. Then by Proposition 3.3.1 uε = Vε,ξ̄ε +

φε,ξ̄ε is a solution to problem (3.3) and ‖uε − Vε,ξ̄ε‖ = ‖φ̄ε,ξ̄ε‖ = o(ε).
We first construct a particular η̄ε ∈ Dk0

ε,ρ. Let η̄ε = (η1, η2, ..., ηk), with
ηi = ηi(ε) = expξ0

(
√
ε ei), for i ∈ {1, 2, ..., k}, where e1, e2, ..., ek are distinct

points in Rn.
Then, by direct computation, η̄ε verifies the following estimates:
a. dg(ξ0, ηi) =

√
ε |ei|.

b. dg(ηi, η j) = |exp−1
ηi
η j| =

√
ε (|ei − e j| + o(1)).

c. U
(

exp−1
ηi
η j

ε

)
= o(ε2), since

U
exp−1

ηi
η j

ε

 = U
(
dg(ηi, η j)

ε

)
= U

( √
ε(|ei − e j| + o(1))

ε

)
= o(ε2).

We can then see that J̄(η̄ε) = k0α + (1/2)βλε2 ∑k0
i=1 sg(ηi) + o(ε2), by

combining (c) and the expansion of J̄(η̄ε) in Proposition 3.3.1.
Note that (a) and (c) imply that, for a fixed ρ > 0 and ε small enough,

η̄ε = (η1, η2, ..., ηk) ∈ Dk0
ε,ρ.

Now, since sg(ξ0) is a local minimum, for ε small we have an expansion
for sg(ηi):

sg(ηi) = sg(ξ0) + s′′g (ξ0) (dg(ξ0, ηi))2 + o(
√
ε3) = sg(ξ0) + s′′g (ξ0) ε |ei|

2 + o(
√
ε3),

so in particular sg(ηi) = sg(ξ0) + o(1).
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Then we have:

J̄(η̄ε) = k0α+(1/2)βλε2
k0∑
i

sg(ηi)+o(ε2) = k0α+(1/2)βλε2
k0∑
i

(sg(ξ0)+o(1))+o(ε2),

and we obtain

J̄(η̄ε) = k0α + k0(1/2)βλε2sg(ξ0) + o(ε2). (3.51)

Now, since ξ̄ε is a maximum of J̃ε in Dk0
ε,ρ, we have

J̄ε(ξ̄ε) ≥ J̄(η̄ε). (3.52)

Applying Proposition 3.3.1 to the left side of (3.52), we get

k0α+
1
2
βλε

2
k0∑
i

sg(ξi)−
1
2

k0∑
i, j=1,i, j

γi j U

exp−1
ξi
ξ j

ε

 ≥ k0α+k0
1
2
βλε

2sg(ξ0)+o(ε2),

that is,

βλε
2

k0sg(ξ0) −
k0∑
i

sg(ξi)

 +

k0∑
i, j=1,i, j

γi j U

exp−1
ξi
ξ j

ε

 ≤ o(ε2). (3.53)

Fix ρ, small enough so that ξ0 is the only minimum of sg in Bg(ξ0, ρ).
With this choice of ρ we see that, in fact, each term in the left hand side of
inequality (3.53) is non-negative and therefore bounded from above by o(ε2).

Since d(ξ0, ξi) ≤ ρ, for each i, 1 ≤ i ≤ k0, we have,

0 ≤ βλε2

k0sg(ξ0) −
k0∑
i

sg(ξi)

 = o(ε2),

that is, since βλ < 0,

0 ≥ k0sg(ξ0) −
k0∑
i

sg(ξi) = o(1). (3.54)

It follows that limε→0 sg(ξi) = sg(ξ0). And then, since ξ0 is the only minimum
point of sg in Bg(ξ0, ξi), we have limε→0 ξi = ξ0. Hence, ε small enough implies

dg(ξi, ξ0) < ρ. (3.55)

Now, recall that γi j :=
∫
Rn U p−1(z)e〈bi j,z〉dz, and that |bi j| = 1, for all i, j ≤ k.

This implies that γi j is bounded from below by a positive constant. We define

γ := min
{ ∫

Rn
U p−1(z)e〈b,z〉dz : b ∈ Rn, |b| = 1

}
> 0.
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Then, by (3.53) and (3.54),

o(ε2) ≥
k0∑

i, j=1,i, j

γi j U

exp−1
ξi
ξ j

ε

 ≥ k0∑
i, j=1,i, j

γ U

exp−1
ξi
ξ j

ε

 ,
that is, for ε small enough,

U

exp−1
ξi
ξ j

ε

 < ε2. (3.56)

Of course, (3.56) and (3.55) imply that ξ̄ε ∈ Dk0
ε,ρ.

3.5 Proof of Proposition 3.2.1
In this section we sketch a proof for the finite dimensional reduction,
Proposition 3.2.1. A detailed proof in a similar situation can be found in
[15, 26].

Proof. Recall the operator

S ε = ∇Jε : Hε → Hε .

and eq. (3.12)
Π⊥
ε,ξ
{S ε(Vε,ξ + φ)} = 0.

We may rewrite eq. (3.12) as

0 = Π⊥
ε,ξ
{S ε(Vε,ξ+φ)} = Π⊥

ε,ξ
{S ε(Vε,ξ)+S ′ε(Vε,ξ) φ+N̄ε,ξ̄(φ)} = −Rε,ξ̄+Lε,ξ̄(φ)−Nε,ξ̄(φ),

with the first term being independent of φ:

Rε,ξ̄ := Π⊥
ε,ξ
{S ε(Vε,ξ)} = Π⊥

ε,ξ̄
{i∗ε[ f (Vε,ξ̄)] − Vε,ξ̄},

the second term, the linear operator:

Lε,ξ̄(φ) = Π⊥
ε,ξ
{S ′ε(Vε,ξ) φ} = Π⊥

ε,ξ̄
{φ − i∗ε[ f ′(Vε,ξ̄)φ]},

and the last term a remainder:

Nε,ξ̄(φ) := Π⊥
ε,ξ̄
{N̄ε,ξ̄(φ)} = Π⊥

ε,ξ̄
{i∗ε[ f (Vε,ξ̄ + φ) − f (Vε,ξ̄) − f ′(Vε,ξ̄)φ]}.

Hence, eq. (3.12) can be written as

Lε,ξ̄(φ) = Nε,ξ̄(φ) + Rε,ξ̄.

And then, if L is invertible, we may turn eq. (3.12), into a fixed point
problem, for the operator Tε,ξ̄(φ) := L−1

ε,ξ̄
(Nε,ξ̄(φ) + Rε,ξ̄).

We start by proving that Lε,ξ̄ is in fact invertible, for appropriate ξ̄ and ε.
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Lemma 3.5.1. There exists ε0 > 0 and c > 0, such that for any ε ∈ (0, ε0) and
ξ̄ ∈ MK , ξ̄ = (ξ1, ξ2, ..., ξK), such that

K∑
i,k=1,i,k

U

exp−1
ξi
ξk

ε

 < ε2,

we have,

||Lε,ξ̄(φ)||ε ≥ c||φ||ε ,

for any φ ∈ K⊥
ε,ξ̄

.

Proof. We will proceed by contradiction. Suppose that there are sequences
{ε j} j∈N, ε j → 0 and {ξ̄ j} j∈N, ξ̄ j = (ξ1 j , ξ2 j , ..., ξK j), such that

K∑
i,k=1,i,k

U

exp−1
ξi j
ξk j

ε j

 < ε2
j ,

and {φ j} ⊂ K⊥
ε,ξ̄

, such that Lε j,ξ̄ j(φ j) = ψ j, with ||φ j||ε j = 1 and ||ψ j||ε j → 0.
Let ζ j := Πε j,ξ̄ j{φ j − i∗ε j

[ f ′(Vε j,ξ̄ j)φ j]}. Hence,

φ j − i∗ε j
[ f ′(Vε j,ξ̄ j)φ j] = ψ j + ζ j. (3.57)

That is, for each j, ψ j ∈ K⊥
ε j,ξ̄ j

and ζ j ∈ Kε j,ξ̄ j . Now, let u j := φ j − (ψ j + ζ j).
We will prove the following contradictory consequences of the existence

of such series:

1
εn

j

∫
M

f ′(Vε j,ξ̄ j)u
2
j dµg → 1, (3.58)

and
1
εn

j

∫
M

f ′(Vε j,ξ̄ j)u
2
j dµg → 0, (3.59)

this will prove that such sequences {ξ̄ j}, {φ j}, {ε j} cannot exist. We start by
proving (3.58).

First we note that:

‖ζ j‖ε j → 0 as j→ ∞. (3.60)

Since ζ j ∈ Kε j,ξ̄ j , let ζ j :=
K∑

i=1

n∑
k=1

aki
j Zk

ε j,ξi j
. For any h ∈ {1, 2, . . . , n} , and

l ∈ {1, 2, . . . ,K} we multiply ψ j + ζ j (eq. (3.57)) by Zh
ε j,ξl j

, and we find
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K∑
i=1

n∑
k=1

aki
j 〈Z

k
ε j,ξi j

, Zh
ε j,ξl j
〉ε j = 〈φ j, Zh

ε j,ξl j
〉ε j − 〈ι

∗
ε j

[ f ′(Vε j,ξ̄ j)φ j], Zh
ε j,ξl j
〉ε j .

(3.61)
On the other hand, by (3.23),

K∑
i=1

n∑
k=1

aki
j 〈Z

k
ε j,ξi j

, Zh
ε j,ξl j
〉ε j = Cahl

j + o(1),

combining this and (3.61):

Cahl
j +o(1) =

1
εn

j

∫
M

[ε2
j∇gZh

ε j,ξl j
∇gφ j+(ε2

jλsg+1)Zh
ε j,ξ j j

φ j− f ′(Vε j,ξ̄ j)φ jZh
ε j,ξl j

] dµg.

(3.62)
Let

φ̃l j(z) =

{
φl j(expξl j

(ε jz)χr(ε jz)) if z ∈ B(0, r/ε j) ,
0 otherwise,

(3.63)

Then we have that for some constant c̃, ‖φ̃l j‖H1(Rn) ≤ c̃‖φ̃l j‖ε j ≤ c̃.
Therefore, we can assume that φ̃l j converges weakly to some φ̃ in H1(Rn)
and strongly in Lq

loc(R
n) for any q ∈ [2, pn). Also note that,

|
1
εn

j

∫
M
ε2

j sgZh
ε j,ξl j

φ j dµg| ≤ ε
2
j c1 |

∫
B
(
0, r
ε j

) ψh(z)χr(ε jz)φ̃l j(z) |gξl j (ε jz)|
1/2 dz|

= ε2
j c1

(∫
Rn
ψh φ̃ dz + o(1)

)
≤ ε2

j c1

(∫
Rn

(ψh)2 dz
)1/2 (∫

Rn
φ̃2 dz

)1/2

+ o(ε2
j )

≤ c1 c2 ε
2
j ||φ̃||L2(Rn) + o(ε2

j ) ≤ c1 c2 c3 ε
2
j + o(ε2

j ) = o(ε j), (3.64)

where c1 is an upper bound for sg, c2 for ||∇U ||L2(Rn) and c3 for ||φ̃||L2(Rn) .
Then we have, by eqs. (3.62) and (3.64)

Cahl
j + o(1) =

1
εn

j

∫
M

[ε2
j∇gZh

ε j,ξl j
∇gφ j + (ε2

jλsg + 1)Zh
ε j,ξl j

φ j − f ′(Vε j,ξ̄ j)φ jZh
ε j,ξl j

] dµg

=
1
εn

j

∫
M

[ε2
j∇gZh

ε j,ξl j
∇gφ j + Zh

ε j,ξl j
φ j − f ′(Vε j,ξ̄ j)φ jZh

ε j,ξl j
] dµg + o(ε j)

=

∫
Rn

(∇ψh∇φ̃ + ψhφ̃ − f ′(U)ψhφ̃) dz + o(1) = o(1).

(3.65)
From (3.65), we get that ahl

j → 0 for any h = 1, · · · , n, and any l =

1, · · · ,K and then (3.60) follows. We are ready to prove (3.58).
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Recall that u j = φ j − (ψ j + ζ j), since ‖φ j‖ε j = 1, ‖ψ j‖ε j → 0 and ‖ζ j‖ε j → 0
then

‖u j‖ε j → 1. (3.66)

Moreover, by (3.57) u j = ι∗ε j
[ f ′(Wε j,ξ j)φ j], hence, by (3.19), it satisfies weakly

−ε2
j ∆gu j + (ε2

jλsg + 1)u j = f ′(Vε j,ξ̄ j)u j + f ′(Vε j,ξ̄ j)(ψ j + ζ j) in M. (3.67)

Multiplying (3.67) by u j, and integrating over M,

‖u j‖
2
ε j

=
1
εn

j

∫
M

f ′(Vε j,ξ̄ j)u
2
j dµg +

1
εn

j

∫
M

f ′(Vε j,ξ̄ j)(ψ j + ζ j)u j dµg. (3.68)

By Hölder’s inequality and eq. (3.18) we can find eq. (3.58):

|
1
εn

j

∫
M

f ′(Vε j,ξ̄ j)(ψ j + ζ j)u j dµg|

≤

 1
εn

j

∫
M

( f ′(Vε j,ξ̄ j) u j)2 dµg

 1
2
 1
εn

j

∫
M

(ψ j + ζ j)2 dµg

 1
2

≤ c ||u j||ε j ||ψ j + ζ j||ε j = o(1),

since ‖ψ j‖ε j → 0, ‖ζ j‖ε j → 0, and ‖u j‖ε j → 1 as j → ∞. We conclude from
eq. (3.68) that 1

εn
j

∫
M

f ′(Vε j,ξ̄ j)u
2
j dµg → 1.

Finally, we prove eq. (3.59).
Given l ∈ {1, · · · ,K}, we define

ũl j = u j

(
expξl j

(ε jz)
)
χr

(
expξl j

(ε jz)
)
, z ∈ Rn .

Note that ‖ũl j‖
2
H1(Rn) ≤ c‖u j‖

2
ε j
≤ c. Then, up to a subsequence, ũl j → ũl weakly

in H1(Rn) and strongly in Lq
loc(R

n) for any q ∈ [2, pn), for some ũl ∈ H1(Rn) .
We now claim that ũl solves weakly the problem

−∆ũl + ũl = f ′(U)ũl in Rn. (3.69)

Let ϕ ∈ C0(Rn). Set ϕ j(x) := ϕ

(
exp−1

ξl j
(x)

ε j

)
χr

(
exp−1

ξl j
(x)

)
, for x in

B(ξl j , ε j R) ⊂ M. For R big enough such that supp ϕ ⊂ B(0,R) and j big
enough such that B(ξl j , ε j R) ⊂ B(ξl j , r).

Multiplying (3.67) by ϕ j and integrating over M,

1
εn

∫
M

(
ε2

j∇gu j ∇gϕ j + (1 + sgλε
2
j ) u jϕ j

)
dµg
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=
1
εn

j

∫
M

f ′(Vε j,ξ̄ j) u j ϕ j dµg +
1
εn

j

∫
M

f ′(Vε j,ξ̄ j)(ψ j + ζ j) ϕ j dµg.

We may rewrite this equation in Rn by setting x = expξl j
(ε j z):

∫
B(0,R)

 n∑
s,t=1

gst
ξl j

(ε jz)
∂ũl j

∂zs

∂ϕ

∂zt
+ (1 + sgλε

2
j )ũl jϕ

 |gξl j
(ε jz)|1/2dz

=

∫
B(0,R)

f ′
U(z)χr(ε jz) +

∑
i,l

U

exp−1
ξl j

expξi j
(ε jz)

ε j

 χr

(
exp−1

ξl j
expξi j

(ε jz)
)

ũl j ϕ |gξl j (ε jz)|
1/2dz

+

∫
B(0,R)

f ′
U(z)χr(ε jz) +

∑
i,l

U

exp−1
ξl j

expξi j
(ε jz)

ε j

 χr

(
exp−1

ξl j
expξi j

(ε jz)
)

(3.70)
(ψ̃ j + ζ̃ j) ϕ |gξl j

(ε jz)|1/2dz,

where ψ̃ j(z) := ψ j(expξl j
(ε j z)) and ζ̃ j(z) := ζ j(expξl j

(ε j z)) for z ∈ B(0,R/ε j).
Note that∫

B(0,R)
sgε

2
j ũl jϕ|gξl j

(ε jz)|1/2dz ≤ c ε2
j

∫
B(0,R)

ũl jϕ|gξl j
(ε jz)|1/2dz

≤ c ε2
j

(∫
B(0,R)

ũ2
l j
dz

)1/2 (∫
B(0,R)

ϕ2|gξl j
(ε jz)|dz

)1/2

≤ c ε2
j ||ũl j |||H1(Rn)c2 = o(ε j).

with c an upper bound for sg, c2
2 an upper bound for

∫
B(0,R)

ϕ2|gξl j (ε jz)|dz. Recall
also that ul j is bounded independently of j in H1(Rn).

Hence, taking the limit as ε j → 0, in (3.70)∫
Rn

 n∑
s,t=1

δs,t
∂ũl

∂zs

∂ϕ

∂zt
+ ũlϕ

 dz =

∫
Rn

f ′ (U(z)) ũl ϕ dz, (3.71)

since ψ̃ j, ζ̃ j → 0 strongly in H1(Rn). Eq. (3.71) for each ϕ ∈ C∞0 (Rn), implies
the claim that ũl solves weakly eq. (3.69) in Rn.

We now claim that for any h ∈ {1, 2, ...n}, ũl satisfies also∫
Rn

(
∇ψh∇ũl + ψhũl

)
dz = 0. (3.72)



CHAPTER 3. ON A PRODUCT MANIFOLD 67

To prove (3.72) we compute

|〈Zh
ε j,ξl j

, u j〉ε j | = |〈Z
h
ε j,ξl j

, φ j − ψ j − ζ j〉ε j | = |〈Z
h
ε j,ξl j

, ζ j〉ε j |

≤ ‖Zh
ε j,ξl j
‖ε j ‖ζ j‖ε j = o(1), (3.73)

since φ j, ψ j ∈ K⊥
ε j,ξ̄ j

and eq. (3.60). On the other hand, we have

〈Zh
ε j,ξl j

, u j〉ε j =
1
εn

j

∫
M

[ε2
j ∇gZh

ε j,ξl j
∇gu j + (ε2

j λsg + 1) Zh
ε j,ξl j

u j] dµg.

Of course, by Hölder’s inequality and eq. (3.18):∣∣∣∣∣∣ 1
εn

j

∫
M
ε2

jλsgZh
ε j,ξl j

u j dµg

∣∣∣∣∣∣ ≤ c ε2
j

∣∣∣∣∣∣ 1
εn

j

∫
M

Zh
ε j,ξl j

u j dµg

∣∣∣∣∣∣
≤ c ε2

j

 1
εn

j

∫
M

(Zh
ε j,ξl j

)2 dµg

 1
2
 1
εn

j

∫
M

(u j)2 dµg

 1
2

≤ c ε2
j

(∫
B(0,r/ε j)

(
ψh(z) χr(ε jz)

)2
|gξl j

(ε jz)|1/2dz
) 1

2
(∫

M
u2

j dµg

) 1
2

≤ c ε2
j

(∫
Rn
|∇U |2dz + o(1)

)1/2

||u j||ε j = o(ε j),

since ψh(z) = ∂U
∂zh

(z), and ‖u j‖ε j → 1 as j→ ∞. Then

〈Zh
ε j,ξl j

, u j〉ε j =
1
εn

j

∫
M

[ ε2
j∇gZh

ε j,ξl j
∇gu j + Zh

ε j,ξl j
u j ] dµg + o(ε j)

=

∫
B(0,r/ε j)

[
n∑

s,t=1

gst
ξl j

(ε jz)
∂

∂zs

(
ψh(z)χr(ε jz)

) ∂

∂zt

(
ũl j(z)

)
+ ψh(z)χr(ε jz)ũl j(z) ] |gξl j

(ε jz)|
1
2 dz + o(ε j)

=

∫
Rn

(
∇ψh∇ũ + ψhũ

)
dz + o(1). (3.74)

From (3.73) and (3.74) we prove the claim of eq. (3.72). Therefore, by (3.69)
and (3.72) it follows that ũ = 0.

We now prove eq. (3.59). We will estimate 1
εn

j

∫
M

f ′(Vε j,ξ̄ j)u
2
j dµg by

partitioning M in various subsets. First we will make estimates in small
neighborhoods around each ξl j , l ∈ {1, 2, ...,K}, using the fact that ũl = 0.
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Then we will make estimates in the complement of these neighborhoods using
the hypothesis that

K∑
i,k=1,i,k

U

exp−1
ξi j
ξk j

ε j

 < ε2
j .

Let R j = 1
2 min{dg

(
ξl j , ξm j

)
, l , m}. Let M̃ =

K⋃
l=1

Bg(ξl j ,R j). Then

1
εn

j

∫
M

f ′(Vε j,ξ̄ j)u
2
jdµg =

1
εn

j

K∑
l=1

∫
Bg(ξl j ,R j)

f ′(Vε j,ξ̄ j)u
2
jdµg+

1
εn

j

∫
M\M̃

f ′(Vε j,ξ̄ j)u
2
jdµg.

(3.75)
Now, on one hand, for each l, since ũl = 0,

1
εn

j

∫
Bg(ξl j ,R j)

f ′(Vε j,ξ̄ j)u
2
jdµg

=

∫
B(0, ε jR j)

f ′
U(z)χr(ε jz) +

K∑
i,l

U

exp−1
ξl j

expξi j
(ε jz)

ε j

 χr

(
exp−1

ξl j
expξi j

(ε jz)
)

ũ2
l j
(z) |gξl j

(ε jz)|1/2dz

= o(1). (3.76)

On the other hand, by Hölder’s inequality

1
εn

j

∫
M\M̃

f ′(Vε j,ξ̄ j)u
2
jdµg

≤

 1
εn

j

∫
M\M̃

(
f ′(Vε j,ξ̄ j)

)n/2
dµg

2/n  1
εn

j

∫
M\M̃

u
2n

n−2
j dµg

 n−2
n

≤ c1

 1
εn

j

∫
M\M̃

(p − 1)
K∑

l=1

W (p−2)
ε j,ξl j


n
2

dµg


2/n

||u j||
2
ε j

≤ c2

 1
εn

j

∫
M\M̃

 K∑
l=1

U (p−2)

exp−1
ξl j

(x)

ε j

 χ(p−2)
r

exp−1
ξl j

(x)

ε j




n
2

dµg


2/n

≤ c2
1
ε2

j

K∑
l=1

∫
Bg(ξl j ,r)\M̃

U
(p−2)n

2

exp−1
ξl j

(x)

ε j

 dµg


2/n

.
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≤ c2
1
ε2

j

e−(p−2)
R j
ε j

K∑
l=1

∫
Bg(ξl j ,r)\M̃

dµg

2/n

≤ c3
1
ε2

j

e−(p−2)
R j
ε j = o(1). (3.77)

Eqs. (3.75), (3.76) and (3.77) prove (3.59), which contradicts (3.58) .
�

Next we study an estimate for the term Rε,ξ̄ = Π⊥
ε,ξ̄
{i∗ε[ f (Vε,ξ̄)] − Vε,ξ̄}.

Lemma 3.5.2. There exist ρ0 > 0, ε0 > 0, c > 0 and σ > 0 such that for any
ρ ∈ (0, ρ0), ε ∈ (0, ε0) and ξ̄ ∈ Dk0

ε,ρ, it holds

‖Rε,ξ̄‖ε ≤ c
(
ε2 +

∑
i, j

e−
1+σ

2
dg(ξi ,ξ j)

ε

)
. (3.78)

Proof. Let Yε,ξ = ε2∆gWε,ξ + (ε2λsg + 1)Wε,ξ, so that by (3.19): Wε,ξ = ι∗ε(Yε,ξ).
Hence, if Yε,ξ :=

∑k0
i=1 Yε,ξi , we have

−ε2∆gVε,ξ + (1 + ε2λsg)Vε,ξ = Yε,ξ on M, (3.79)

that is, Vε,ξ̄ = ι∗ε(Yε,ξ̄). Then, using the estimate in (3.20):

‖Rε,ξ̄‖ε = ‖ι∗ε( f (Vε,ξ̄)) − Vε,ξ̄)‖ε ≤ C | f (Vε,ξ̄) − Yε,ξ̄ |p′,ε
≤ C |

(∑k0
i=1 Wε,ξi

)p−1
−

∑k0
i=1 W p−1

ε,ξi
|p′,ε + |

∑k0
i=1 W p−1

ε,ξi
− Yε,ξ̄i |p′,ε ,

(3.80)

for some C > 0. On one hand, by arguing as in Lemma 3.3 in [15], for some
σ > 0, we get

|
( k0∑

i=1

Wε,ξi

)p−1
−

k0∑
i=1

W p−1
ε,ξi
|p′,ε= o

(∑
i, j

e−
1+σ

2
dg(ξi ,ξ j)

ε

)
. (3.81)

On the other hand,

|

k0∑
i=1

W p−1
ε,ξi
− Yε,ξ̄i |p′,ε=|

k0∑
i=1

(
W p−1

ε,ξi
− Yε,ξi

)
|p′,ε

≤

k0∑
i=1

| W p−1
ε,ξi
− Yε,ξi |p′,ε . (3.82)

Let Ỹε,ξ(z) = Yε,ξ(expξ(z)) for z ∈ B(0, r), then

Ỹε,ξ = −ε2∆gWε,ξ + (1 + ε2λsg)Wε,ξ = −ε2∆g(Uεχr) + (1 + ε2λsg)Uεχr
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= −ε2 χr ∆Uε + Uεχr + ε2λsgUεχr − ε
2Uε∆χr − 2ε2〈∇Uε ,∇χr〉

+ε2(gi j
ξ − δi, j)∂i j(Uεχr) − ε2gi j

ξ Γk
i j∂k(Uεχr)

=
(
U p−1
ε χr − ε

2Uε∆ χr − 2ε2〈∇Uε ,∇χr〉 + ε2(gi j
ξ − δi, j)∂i j(Uεχr) − ε2gi j

ξ Γk
i j∂k(Uεχr)

)
+

(
ε2λsgUεχr

)
.

Then(
1
εn

∫
M

(W p−1
ε,ξ − Yε,ξ)p′dµg

) 1
p′

=

(
1
εn

∫
B(0,r)

(
(Uε(z)χr(z))p−1 − Ỹε,ξ(z)

)p′
|gξ(z)| dz

) 1
p′

≤ c
(

1
εn

∫
B(0,r)

(
U p−1
ε (χp−1

r − χr)
)p′

dz
) 1

p′

+ cε2
(

1
εn

∫
B(0,r)

(Uε∆ χr)p′dz
) 1

p′

+cε2
(

1
εn

∫
B(0,r)

(〈∇Uε ,∇χr〉)p′ dz
) 1

p′

+cε2
(

1
εn

∫
B(0,r)

(
(gi j

ξ − δi, j)∂i j(Uεχr)
)p′

dz
) 1

p′

+cε2
(

1
εn

∫
B(0,r)

(
gi j
ξ Γk

i j∂k(Uεχr)
)p′

dz
) 1

p′

+cε2
(

1
εn

∫
B(0,r)

(
sgUεχr

)p′
dz

) 1
p′

,

by Lemma 3.3 in [26], the first five terms in the last inequality are o(ε2).
Meanwhile, for the last term we have:(

1
εn

∫
B(0,r)

(
ε2sgUεχr

)p′
dz

) 1
p′

≤ c1 ε
2
(

1
εn

∫
B(0,r)

U p′
ε χ

p′
r dz

) 1
p′

≤ c1 ε
2

∫
B(0, r

ε )

U p′dz


1
p′

≤ c2 ε
2.

Thus, eq. (3.82) turns into

|

k0∑
i=1

W p−1
ε,ξi
− Yε,ξ̄i |p′,ε≤

k0∑
i=1

| W p−1
ε,ξi
− Yε,ξi |p′,ε≤ c ε2, (3.83)

for some c > 0. Eqs. (3.81) and (3.83) imply the estimate of the lemma.

�
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As stated above, in order to solve eq. (3.12) we need to find a fixed point
for the operator Tε,ξ : K⊥

ε,ξ
→ K⊥

ε,ξ
defined by

Tε,ξ(φ) = L−1
ε,ξ

(Nε,ξ(φ) + Rε,ξ).

By Lemma 3.5.1 we have

‖Tε,ξ(φ)‖ε ≤ c
(
‖Nε,ξ(φ)‖ε + ‖Rε,ξ‖ε

)
(3.84)

and
‖Tε,ξ(φ1) − Tε,ξ(φ2)‖ε ≤ c

(
‖Nε,ξ(φ1)‖ε − ‖Nε,ξ(φ2)‖ε

)
.

By (3.18) and (3.20), it holds

‖Nε,ξ(φ)‖ε ≤ C | f (Vε,ξ + φ) − f (Vε,ξ) − f ′(Vε,ξ)φ |p′,ε .

And by the Mean Value Theorem, there is some τ ∈ (0, 1) such that, if ||φ1||ε

and ||φ2||ε are small enough,

| f (Vε,ξ + φ1) − f (Vε,ξ + φ2) − f ′(Vε,ξ)(φ1 − φ2) |p′,ε
≤ C | ( f ′(Vε,ξ + φ2 + τ(φ1 − φ2)) − f ′(Vε,ξ))(φ1 − φ2) |p′,ε
≤ C | f ′(Vε,ξ + φ2 + τ(φ1 − φ2)) − f ′(Vε,ξ) | p

p−2 ,ε
| φ1 − φ2 |p′,ε .

(3.85)

It follows from [15], Section 3, that

| f ′(Vε,ξ + φ2 + τ(φ1 − φ2)) − f ′(Vε,ξ) | p
p−2 ,ε
| φ1 − φ2 |p′,ε

≤ C‖φ1 − φ2‖ε .
(3.86)

And then we have

‖Tε,ξ(φ1) − Tε,ξ(φ2)‖ε ≤ ‖Nε,ξ(φ1) − Nε,ξ(φ2)‖ε ≤ c‖φ1 − φ2‖ε , (3.87)

for c ∈ (0, 1), provided ||φ1||ε and ||φ2||ε are small enough.
Hence Tε,ξ̄ has a fixed point in a small enough ball in K⊥

ε,ξ̄
, centered at 0.

Moreover, for such fixed point, we have by eq. (3.84),

||φε,ξ̄ ||ε = ‖Tε,ξ(φ)‖ε ≤ c
(
‖Nε,ξ(φ)‖ε + ‖Rε,ξ‖ε

)
.

On the other hand
||Nε,ξ(φ)||ε ≤ c||φ||ε , (3.88)

for φ with ||φ||ε small enough, since

||Nε,ξ(φ)||ε ≤ c
(
||φ||p−1

ε + ||φ||2ε
)
,
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by eq (3.35) in [15].
Hence by Lemma 3.5.2, and inequality (3.88),

||φε,ξ̄ ||ε ≤ c
(
‖Nε,ξ(φ)‖ε + ‖Rε,ξ‖ε

)
≤ c1||φε,ξ̄ ||ε + c2

(
ε2 +

∑
i, j

e−
1+σ

2
dg(ξi ,ξ j)

ε

)
.

This implies the estimate of the lemma:

||φε,ξ̄ ||ε ≤ c3

(
ε2 +

∑
i, j

e−
1+σ

2
dg(ξi ,ξ j)

ε

)
.

Finally, to prove that the map ξ → φε,ξ̄ is in fact a C1 map, given ε, we use
the Implicit Function Theorem applied to the function

F(ξ̄, φ) = Tε,ξ(φ) − φ.

As stated above, eq. (3.87) guarantees that there is some φε,ξ̄, such that
F(ξ̄, φε,ξ̄) = 0. Also, Tε,ξ(φ) is differentiable, with differentiable inverse
Lε,ξ(φ). The Implicit Function Theorem then implies that ξ → φε,ξ̄ is a C1

map.
�

Resumen del Capı́tulo
En este capı́tulo usamos las técnicas de reducción de Lyapunov-Schmidt para
probar resultados de multiplicidad de soluciones de la ecuación de Yamabe
en una variedad producto.

Sean (Mn, g) una variedad cerrada y (Nm, h) una variedad de curvatura
escalar constante positiva sh. Estamos interesados en soluciones positivas de
la ecuación de Yamabe para la variedad producto (M×N, g+ε2h). Bajo ciertas
condiciones sobre la solución u, la ecuación de Yamabe en esta variedad
resulta:

−ε2∆gu +

( sg

a
ε2 + 1

)
u = up−1, (3.89)

donde a = am+n =
4(m+n−1)

m+n−2 , p = pm+n =
2(m+n)
m+n−2 , sg es la curvatura escalar de

(Mn, g), y ε es suficientemente pequeño como para que la curvatura escalar de
la variedad producto sg + ε−2sh resulte positiva. En este capı́tulo estudiamos
la ecuación

−ε2∆gu +
(
λsgε

2 + 1
)

u = up−1,

donde λ es cualquier número real. Las soluciones positivas de esta ecuación
son los puntos crı́ticos del funcional energı́a Jε : H1,2(M)→ R, dado por
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Jε(u) = ε−n
∫

M

(
1
2
ε2|∇u|2 +

1
2

(
ε2λsg + 1

)
u2 −

1
p

(u+)p

)
dVg,

con u+(x) = max{u(x), 0}.
Dados cualquier punto ξ ∈ M y ε > 0 construimos soluciones apro-

ximadas Wε,ξ mediante el procedimiento de reducción Lyapunov-Schmidt.
Luego probamos el siguiente resultado:

Theorem 3.5.3. Supongamos que βλ , 0. Si βλ < 0 ( βλ > 0) sea ξ0 un
punto de máximo (mı́nimo) local aislado de la curvatura escalar S g. Para
cada entero positivo k0 existe ε0 = ε0(k0) > 0 tal que si ε ∈ (0, ε0) entonces
existen puntos ξε1, . . . , ξ

ε
k0
∈ M tales que

dg(ξεi , ξ
ε
j)

ε
→ +∞ and dg(ξ0, ξ

ε
j)→ 0, (3.90)

y existe una solución uε del problema (3.89) que cumple:

‖uε −
k0∑

i=1

Wε,ξεi
‖ε → 0,

donde β es una constante que depende de las dimensiones de M y N y de λ.

El capı́tulo está organizado de la siguiente forma. En la Sección 3.2
presentamos la notación y los antecedentes, y analizamos la reducción
dimensional del problema mediante el procedimiento Lyapunov-Schmidt.
Luego construimos soluciones aproximadas para la ecuación. En la Sección
3.3 explicamos la expansión asintótica del funcional energı́a en términos de ε.
En la sección 3.4 nos dedicamos a probar el teorema anterior asumiendo que
una proposición auxiliar es verdadera. Luego demostramos dicha proposición
en la Sección 3.5.
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